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Abstract We consider an Euclidean supersymmetric field theory in Z* given by a supersym-
metric ®* perturbation of an underlying massless Gaussian measure on scalar bosonic and
Grassmann fields with covariance the Green’s function of a (stable) Lévy random walk in Z?.

The Green’s function depends on the Lévy-Khintchine parameter o = 2+£ with 0 < o < 2.

2
Fora = % the ®* interaction is marginal. We prove for oo — % = 5 > O sufficiently small and
initial parameters held in an appropriate domain the existence of a global renormalization
group trajectory uniformly bounded on all renormalization group scales and therefore on
lattices which become arbitrarily fine. At the same time we establish the existence of the
critical (stable) manifold. The interactions are uniformly bounded away from zero on all
scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all
scales. The interest of this theory comes from the easily established fact that the Green’s
function of a (weakly) self-avoiding Lévy walk in Z> is a second moment (two point corre-
lation function) of the supersymmetric measure governing this model. The rigorous control
of the critical renormalization group trajectory is a preparation for the study of the critical

exponents of the (weakly) self-avoiding Lévy walk in Z>.

Keywords Lattice renormalization group - Supersymmetry - Self-avoiding Levy processes

1 Introduction

It was observed long ago [25, 26], that the Green’s function of weakly self avoiding sim-
ple random walks (SAW) on a lattice Z% can be expressed as a correlation function in a
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supersymmetric field theory. This can be shown rigorously by the same derivation as in [9—
11] for SAWs on hierarchical lattices. Consider instead of simple random walks the more
general case of continuous time (stable) Lévy walks whose scaling limits are stable Lévy
distributions [16, 24]. Such walks can be realized as jump processes with probability dis-
tributions permitting long range jumps [16]. Their characteristic functions are given by the
Lévy-Khintchine formula with characteristic exponent o, 0 < o <2 [16], @ = 2 correspond-
ing to simple random walks. The Green’s function of continuous time weakly self avoiding
Lévy walks (SALW) can also be realized as a two point correlation function in a super-
symmetric field theory by the same derivation as in [9—11]. This paper is concerned with
proving the existence of a critical uniformly bounded renormalization group (RG) trajectory
for the interactions in the underlying supersymmetric field theory corresponding to the class
of SALWs where o = % with 0 < ¢ < 1 and ¢ held small. The case o = % corresponds to
mean field theory. Uniformity is with respect to the lattice scale which changes with each
step of the renormalization group map. We find that the interactions are non-vanishing at
all renormalization group scales, which is the lattice version of a non-Gaussian fixed point.
This gives the foundation for the study of the Green’s function of SALWs in the scaling limit
which is postponed to the sequel. Ultimately one would like to be able to extract from this
the end-to-end distance behaviour for SALWs.

The supersymmetric field theory in question is a lattice supersymmetric generalization
of the model considered in [13]. We describe it informally here and leave the details for the
next section. Let A be the standard Laplacian in Z°. Then for x, y € Z°, and 0 < « < 2,
C(x —y) = (—=A)"*%(x — y) is the Green’s function of a stable Lévy walk. Let ¢;, ¢, be
independent identically distributed Gaussian random fields in Z’ with covariance %C. Let
@ =@ + i, and @ its complex conjugate. Introduce a pair of Grassmann fields ¥, ¥ of
degree 1 and —1 respectively. Let ® = (¢, ) and ® = (@, ¥). The inner product is given
by (&, ®) = dD =@ + Y. Let A C 77 be a finite subset. Define

VO(A,<I>)=g0f dx(q>ci>)2(x)+ﬂof dx®P(x) 1.1
A A

where the coupling constant gy > 0 and dx is the counting measure in Z>. Then our model
in finite volume A is defined by the supermeasure

dpn(®) =dpc, (®)e” A (1.2)

where C, is the restriction of C to the points of A and duc, (®) is the Gaussian supermea-
sure

diic, (®) = [T dor(des )y (2 () e @ Prz (13)

xeA

Integration over the Grassmann fields is Berezin integration and d () is interpreted as a
linear functional on the Grassman algebra (generated by the yr, ¥ with coefficients which are
functionals of the ¢, ¢). An important fact is that the potential Vo(A, ®) is supersymmetric
(supersymmetry in this context and some of its consequences are given in the Sect. 1.1). As
a consequence we have that the supermeasure d 5 (®) is normalized:

/du,A(d))lzl 1.4)

The parameters of the supermeasure 1, defined in (1.2) correspond to those of SALWs.
Thus go measures the strength of self-repulsion and iy the killing rate of a weakly self-
avoiding Lévy walk. The reader will get a full dictionary in [9-11] where the end-to-end
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The Global Renormalization Group Trajectory 923

distance behaviour was studied for SAWs in a four dimensional hierarchical lattice with the
help of supersymmetry.

We give an informal description of the results of this paper. We will choose o = % with
0 < & < 1, in particular we hold ¢ > 0 very small. We will take A to be a very large cube.
By successive RG transformations we will get a sequence of measures (the RG trajectory
of measures) living in smaller and smaller cubes in finer and finer lattices till we arrive
at a fixed small cube in a very fine lattice. This will take log A steps. At every step the
measure is a new Gaussian measure times a new supersymmetric density. The Gaussian
measure is characterized by a covariance and the sequence of covariances converge to a
smooth continuum covariance. The supersymmetric density incorporates the interactions.
The principal information is in the local interactions incorporated in local potentials of the
above type albeit with new parameters (coupling constants) and on a finer lattice. The other
interactions are contracting (irrelevant) in an appropriate sense and are expressed in the form
of polymer activities. The coupling constants and polymer activities give coordinates of
the RG trajectory. These coordinates provide Banach spaces of interactions which permit a
rigorous study of the Wilson RG [28] avoiding real space renormalization group pathologies,
[21, 22], related to the Griffiths singularity problem in disordered systems [20]. See [5] for
a review of these pathologies. The goal of this paper is to study the RG trajectory of these
coordinates in the infinite volume limit which makes sense for these coordinates. The true
infinite volume limit and the scaling limit will be taken at the level of correlation functions.

In Sect. 1 we define the model, introduce supersymmetry and develop some of its con-
sequences. The RG analysis of this paper is based on the finite range multiscale expansion
of covariances of [8]. We summarize the basic results of [8] pertinent to this paper in Theo-
rem 1.1. This is an alternative to the Kadanoff- Wilson block spin RG developed extensively
by Gawedzki and Kupiainen [17—-19], and Balaban [2—4]. A crucial simplification arises due
to the finite range of the fluctuation covariances: Cluster expansions are no longer needed in
the control of the fluctuation integration which is an essential step of RG transformations.
As aresult all estimates are local in character. In this section we also define lattice polymers
and polymer activities.

In Sect. 2 we introduce norms which will measure the size of polymer activities. These
norms are suggested by those in the continuum analysis of [13]' but now take account of
the presence of Grassmann fields. The choice of these norms was inspired by discussions
with David Brydges. They are closely related to norms which will appear in the forthcoming
study of self-avoiding simple random walks in four dimensions by Brydges and Slade [14].

In Sect. 3 we define the RG map as we will use it and in Sect. 4 apply it to our model. In
particular we develop second order perturbation theory. The task is to control the contribu-
tions from the remainder and this is taken up in the next section.

Section 5 gives the basic estimates that we will need for the control of the RG trajectory.
These estimates are extensions of those in Sect. 5 of [13]. The latter paper studied a critical
bosonic theory in the continuum. Our present estimates take account of the presence of
Grassmann variables as well as the lattice which has led to a considerable number of new
details. The upshot is Theorem 5.1.

Section 6 is devoted to the proof of existence of the stable manifold: there exists an
initial critical mass fio which is a Lipshitz continuous function of the coupling constant g

1A, Abdesselam in [1] corrected an error which occurs in [7, 13] where it is wrongly asserted that certain
normed spaces are complete. This problem was resolved in [1] by some changes in definitions which fortu-
nately are such that, as noted in [1], the estimates, theorems and proofs of [7, 13] remain true without change.
On the lattice however the function space subtleties encountered in [1] disappear.
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such that RG trajectory is bounded uniformly on all scales. The proof is established by a
combination of three theorems, namely Theorems 6.1, 6.2, and 6.3.

Finally we observe that the coupling constant g, is uniformly bounded away from O at all
scales n > 0. As a result the global RG trajectory gives rise to a non-Gaussian field theory.
‘We remark that in a continuum version of this model with a cutoff modelled on that of [13]
one can prove more: the continuum RG trajectory ends at a non-trivial fixed point. But the
notion of a fixed point is devoid of meaning for lattice field theories because the RG map
even in infinite volume does not give an autonomous action on a fixed Banach space.

1.1 Definitions, Model, Supersymmetry

Let ey, e;, e3 be the standard basis of unit vectors specifying the orientation of 77 We let O
denote the forward lattice derivative in direction ¢, and 9, its LX(Z%) adjoint. The latter is

the backward derivative. Then the lattice Laplacian A in 73 is defined by
3
—A=) 0%, (1.5)
n=1
Let A(p) be the Fourier transform of the integral kernel of A in Z*, namely
3
A(p) =2 (cos(p,) — 1) (1.6)

pn=1

Let @ = % be a real number with 0 < @ < 2. Then the Green’s function of a (stable)
Lévy walk in Z is given by

—a/2 d*p ipx—y A —a/2
Cx—y)=(-A)" (X—)’)Z/ ——— P (= A(p)) (.7

[-m,7]? (27'[)3
C is positive-definite and therefore qualifies as the covariance of a Gaussian random

field in Z°. We introduce a pair of independent identically distributed Gaussian random
fields ¢, ¢, with mean O and covariance

1
E(p;j(x)p;(y) = EC(X -y (1.8)
for j=1,2.

Let ¢(x) = ¢1(x) + i@y (x) be a complex scalar field and ¢ (x) its complex conjugate. On
the space of functionals of ¢, ¢ we have the Gaussian probability measure

dic(@) =duyc(@diyc(42) (1.9)
Then each of ¢, ¢ has zero covariance and

E(@(x)p(y)) =Cx —y) (1.10)
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The Global Renormalization Group Trajectory 925

Grassmann Algebra and Integration

Let A C Z° be a bounded subset. F, represents the algebra of C valued functionals of the
fields {¢, ¢ : A — C}. Let ¥ (x), ¥ (x) for all x € A be the (anti-commuting) Grassman
elements of degree 1, —1 respectively. Following standard usage we will refer to them as
(scalar) fermions. We denote by Q, the Grassman algebra generated by the v (x), ¥/ (y)
by multiplication and linear sums for all x, y € A with coefficients in F,. The Grassmann
algebra is naturally graded Q, = @, where the integer p is the degree and each QF is
a F, module. 4 is an algebra. Because of the anticommuting property of the generators,
and because A is a finite lattice an element of 2, is a finite sum of degree p elements with
coefficients in F,. For example, an element F, of Q9 can be uniquely represented as

Pon=% [ de 05, Fanp(@: 51,5y ) | [YG0 TG (11D

p=>0 j=1
where dx is the counting measure in 7. The coefficients, Fx 2,(@; X1, -+, Xp, Yis -+ -5 ¥p)s
are antisymmetric in (xy,...,x,) and in (y;, ..., y,). When A is a finite subset the above

multiple sum is finite. In the following we will often refer to the coefficients F, o, above
as bosonic coefficients. Here and in the following we suppress indicating the dependence of
the bosonic coefficients on ¢.

These considerations are of course valid for a lattice (§Z)* for any lattice spacing § with
the corresponding notations As, Fa,, 245, dx being 83 times the counting measure in (§Z)3.

Now we define fermionic expectation (integration) using Berezin integration which we
review briefly and set up our conventions. Berezin integration is a linear map Q, — Qx
which satisfies

a
dy (x)F. =n'? F 112
/W(X)A(lﬁl/fdﬂb) T (1.12)
where Fp € Q4 and the fermionic derivative 57— dj’(x) is an antiderivation: If f € Qf and
g € Q% then
(fg)= g
EM//(x) w aw( N

Integration with respect to di/ (x) is given by the same formula with —2— on the right

?
hand side. Multiple integration is repeated integration using the above rule, z{/<(ee):p1ng in mind
that fermionic derivatives anticommute.

Define Cp(x —y)=C(x —y) : x,y € A. We consider this as a | A| x |A| dimensional
positive definite symmetric matrix with x, y labelling the entries. Then we define the fermi-

onic expectation £y, as a linez_lr map Qp — Fa as follows: Let Fp € Q2,. We adopt the
convention F (Y, ¢) = Fa (Y, ¥, ¢, ¢). Then

Epn(Fp) = /dﬂcA (W) FA(Y, @) (1.13)
where

/ dpcy (Y)Y Fa(r, $)) = (detwCp)!™ / []@v i) e V2w By (y, 9)
xeA
(1.14)
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926 PK. Mitter, B. Scoppola

We call duc, () a fermionic Gaussian measure and use the terminology measure and ex-
pectation interchangeably. It is not difficult to show that we have a fermionic counterpart of
the bosonic Gaussian formula, namely

/ ditc, DY Fa(fr, ¢) = e M PN TETG B g )y (115)

where dx is the counting measure. The fermionic expectation above annihilates the compo-
nent of F ¢ QY.
Note that the expectation of a product of two i or of two { vanishes whereas if x, y € A

Era(U )y (»)=Cx—y) (1.16)

More generally, if x;, y; €A, j=1,2,...,n

Eja ( I1 xﬁ(x,)w/f(y,)> = det (C(xj — ) e (1.17)

j=1
We define the field @ (x) (called superfield in anticipation) as the pair
O (x) = (p(x), ¥ (x)) (1.18)

with the scalar product

(@(x), D(y) = PP = ()G + Y ()P () 1.19)

More generally if A(x, y) is a matrix for x, y € A we define

(o, ACD)LZ(A) = / dxdy ®(x)A(x, )’)q_)()’)

AxA

2/ dxdy (p(x)A(x, Y)P(y) + ¥ (D) A, )P (Y)) (1.20)
AxA

Let Fp(®) belong to 4. F, also depends on @ but here and in the following this is not
explicitly indicated. Since F, () € 2, it has the representation (1.11). We define the ex-
pectation E, as a linear map 24, — C obtained by combining the bosonic and fermionic
expectations: If F, € @2, with u¢ integrable bosonic coefficients then

Ex(Fo(®)) = / dpic, (D) Fa(P) = / dpc, @)duc, W)FA(®)  (1.21)
Thus
En(Fp(®)) = f [Tdedaco [Tdv e [Jdibm e X Pempy @) (1.22)
xeA xeA xeA

Notice that the determinant in the fermionic integration formula (1.14) has cancelled out
with the inverse of the same determinant which appears in the bosonic integration measure.

The expectation defined above is normalized. In other words if 14 (®) is the indicator
function of Q, then

Ex(15(®)) =1 (1.23)
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The Global Renormalization Group Trajectory 927

We have the natural order relation 2, C Q4 if A C A’. Moreover if A C A’ and Fp € Qp
then E,/(Fp) = EA(F,) as is not difficult to show. We define 2 as the inductive limit of
the Q4 as A C Z varies over increasing subsets tending to Z’ respecting the order relation
above. The {E,, 2,5} constitute a projective family. We denote by E the projective limit:
Let F € Q with uc integrable bosonic coefficients. We have

E(F) = /duc@) F(®) = Al/i;IZg Ex(F) (1.24)

and this limit exists since F' € 2, for some finite set A and therefore E(F) = E 5 (F') which
exists.

Remark The above construction is motivated by analogous considerations in [9].

Lattice Integration 1In the following and throughout this paper we will represent lattice
sums as integrals where for the (§7)3 lattice the integration measure is the counting measure
in (8Z)3 times a factor 8. Thus if f is a function on (6Z)3 we define

d =4 1.25
fw xf)=8 ) f) (1.25)

xe(82)3
We now define a Laplacian acting on functionals in
a
AP (x) ad(y)
a a a9 ]
=f dxdyC(x—y)[ — + - }
X713 P (x) dp(y) AV (x) Y (y)

AC:/ dxdy C(x —y)
VARYAL

(1.26)

These integrals on YA automatically restricts to A x A when applied to functionals of &
which live in a bounded subset A of Z>. Tt follows from (1.15) and its bosonic counterpart
that if F (D) € Q(}\ with pc integrable bosonic coefficients then

E(Fy(®)) = €2 FA(®)]y_g_y—j—o (1.27)

Note that the action of e”¢ is well defined. In fact since Fx(®) is in Q?\ and A is a finite
lattice, it can be expressed as a finite sum of Grassmann elements with coefficients in Fj.
e”¢ factorises into bosonic and Grassmann exponentials. The expansion of the Grassman
exponential acting on F, (®) evaluated at 1 = ¢ = 0 thus terminates and we are left with
the expectation of the bosonic coefficients which is well defined since they are j1¢ integrable
by assumption.

We have in particular

E(@x)®(y) =0 (1.28)
and more generally
E(H q>(x,-)ci>(yj)> =0 (1.29)
j=1

This can be proved by computation or more simply using supersymmetry (introduced later).
The integrand is supersymmetric and Lemma 1.1 below gives the result.
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928 PK. Mitter, B. Scoppola

Wick polynomials P (®) are defined by the formula

‘P(®):c =e 2 P(D) (1.30)
This implies in particular that
D) P(y)ic = Px)D(y) (1.31)
and
(PD)ic(x) = (PD)* (x) — 2C(0)(P - D) (x) (1.32)

For future reference we note that fora =1, 2
(PD)Dyic(x) = (PP)D, (x) — C(0) D (x) (1.33)
where & = ¢, &, =.

Remark The considerations from (1.12) to (1.32) remain valid on a lattice (§Z)? if we re-
place in the above A by a bounded subset A; C (§Z)° and the positive definite matrix C by
an arbitrary positive definite matrix Cs(x, y) with x, y € (§Z)3. The functional Laplacian
Ac in (1.26) is replaced by A¢, with the integration over (8Z)* x (§Z)3.

The Model Let L be a triadic integer, L = 37 with integer p > 2. Let Ay = (— %, %)3 C
R, with N large be a large open cube in R*. Distances in R* and lattices (8Z)® will be
measured in the norm

e =yl = max |x; =yl (1.34)
Define Ay o= Ay NZ>. This is a (large) cube in Z* of edge length L". The second

index 0 in A y o emphasizes that this is a cube in 7. The local potential (1.2) will be written
in a C-Wick ordered form by using (1.32) and (1.31). This gives

Vo(Ano, ®) = f dx go:(PP):c(x) + uo/ dx 1 ®P:c(x) (1.35)
AN,0 AN,0
where ©o = jio + 2C(0)go-
Define
Zo(An,, B) = eV Avo® (1.36)
We define the measure
dpn,o(®) =duc(®)Zo(An,o, P) (1.37)
Note that the measure is normalized
fduzv,o@) =1 (1.38)

This follows from Lemma 1.1 below which exploits supersymmetry introduced later. How-
ever heuristically this is evident if we formally expand the exponential, integrate term by
term and use (1.29). This measure defines our model.
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The Global Renormalization Group Trajectory 929

Supersymmetry

The density of the measure duy o(P) as well as its RG evolution have the important property
of being supersymmetric. This will restrict considerably the form of the evolved density.

A supersymmetry transformation Q : Q5 — 2, is a derivation on the bosonic fields and
an antiderivation on the Grassman fields which acts on the fields as follows:

Qp=1y
Q=—v (1.39)
QY =¢
QY=g

Let Fo(®) = Fale, @, ¥, %) belong to 2, with bosonic coefficients differentiable in the
bosonic fields ¢(x), x € A. Then the action of Q on F, is given by a super vector field
denoted by the same symbol Q

a - a a
— () —— +tok) + o) (1.40)

0
— = )FA
dp(x) dp(x) Y (x) Y (x)

szfddwm
A
We say that a functional F, is supersymmetric if QF = 0.

Remark A super vector field is not a vector field because fermionic derivatives are anti-
derivations.

An (infinitesimal) gauge transformation G : Q, — 2, is a derivation whose action is
given by

Go=ip

9o =" (1.41)
gy =iy

G =iy

This induces on an 24 function F, the action of a vector field denoted by the same symbol G

s 9 5 2
o “5m T Y% TV V9w

QFA=ifdx ((p(x) )FA (1.42)
A

We say that a functional F is gauge invariant if GF4 = 0.
From (1.39) we see that O engenders an infinitesimal gauge transformation (1.41). Thus
acting on gauge invariant functionals

Q*=0 (1.43)

An important property of the super vector field Q which we will exploit later is that it
commutes with the super Laplacian A defined in (1.26):

[Q, Ac]=0

as is easy to verify.
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930 PK. Mitter, B. Scoppola

It is easy to verify that any polynomial in ®® and their (lattice) derivatives is supersym-
metric. As a consequence we have QV (A, ®) =0 where V is given in (1.35) and thus the
starting interaction potential is supersymmetric.

Let I'(x, y) be any positive definite symmetric matrix. Let A be a super Laplacian given
by (1.26) with C replaced by I'. Let F5 (®) be an 24 functional with p¢ integrable bosonic
coefficients. Let £ = (¢, n) be another superfield. Define the convolution

Mr*FA(<1>):/dﬂr(S)FA(®+S)=€AFFA(¢) (1.44)
Since Q commutes with Ar, Q also commutes with convolution with the measure jur:

ur x QF A (®) = Qur * Fp(P) (1.45)

Therefore if F, is supersymmetric so is jur * F. This observation prefigures the supersym-
metry invariance of the renormalization group map which we will introduce later.
It follows by evaluating (1.45) at & = 0 that

/ (@) QFy (@) =0 (1.46)

since the left hand side is given by (ur * QF (P))|e—o and this vanishes by virtue of (1.45)
since the coefficients of the super vector field Q vanish when the fields vanish.

Lemma 1.1 Let Fp(®) be a supersymmtric Q5 functional with differentiable bosonic co-
efficients which are jur integrable. Then

/dur(d)) Fp(P) = Fa(0) (1.47)
Proof A be a real parameter. Define

70 = [ dur(@) FrG:0) (1.48)
We will prove

d
Hf()\)zo (1.49)

This implies that f(A) is a constant and hence evaluating at A = 0 gives (1.47).
Taking the X derivative in (1.48) we get

d
= F0) = / dur(®) (DFy) () (150)

where

D= /dX(¢(X)a¢( )+¢( x) —— + ¥ (x) +9x) (1.51)

3¢(x) 81#( ) Y (x ))

Note that the four coefficients of D can also be written as (Qv (x), Q¥ (x), Q¢ (x), — Q¢ (x))
which we have taken in the same order as above. This suggests that we consider the operator

a -
£= [ ax(porg s+ 0 b = 60 (1.5

)
3¢>(X) 31&( x) I (x)
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The Global Renormalization Group Trajectory 931

and act with Q on it. We also consider the action of £ on Q. A straight forward computation
gives the nice formula

D=%(Q£+EQ) (1.53)

We substitute for D in (1.50) the right hand side of (1.46). The contribution of the first term
vanishes by (1.53). The contribution of the second term vanishes because F, is supersym-
metric by hypothesis. This proves (1.50) and we are done. O

Remark The special case of Lemma 1.1 for a hierarchical lattice is Lemma 2.1 of [11].
This lemma has the important consequence that no field independant relevant parts (defined
later) will arise in the renormalization group analysis to follow.

1.2 Lattice Renormalization Group Transformations

We say that a function f(x,y) has finite range L if f(x,y) =0 : |x — y| > L. Lattice
renormalization group transformations will be based on the finite range multiscale expansion
of the covariance C established in [8].

Let L be a large triadic integer, L =37, p > 2. Define §, = L™". We have a sequence of
compatible lattices (8,Z)° C R?, (8,2)* C (8,11Z)>, withn =0,1,2,.... By, =[-Z, =}
denotes the first Brillouin zone of the dual of the §, lattice. We have the following theorem
which gives the multiscale expansion of the covariance C on Z> as a sum of finite range
fluctuation covariances living on increasingly finer lattices, together with their properties
which we will need later:

G-

Theorem 1.1 (Finite range multiscale expansion) For 0 < @ < 2, d; = and n =
0, 1,2, ... there exist positive definite functions T, (x) defined for x € (8,7)° and a smooth
positive definite function I'¢ . in R? such that for all k > 0, constants cy, 1, cL . independent
ofnandq= %

1) Ckx—-y= ZL_Z"‘!*' I, (XL;ny) and the series converges in L°°(Z3)

n>0

L
2 Tu(x)=0 forlx|= )

3

rA‘n(P)’ <1+ p*~%* forpeBs, Vk>0

(4a) T..(p)=1lim[,(p) exists pointwisein p

(4b)

A A 1

Bup) = Feap)| < ert +p2)—2k(1 + —Z)L-q", Vi =3,k =0, pe By \0
p

(5a) ||33m,, Cullpeo(s,z3) < €Lom>» Ym =0

(5b)  O'T.. = limdy'T, existsin L=((8Z)°)
n—0o0

(50) ||33m,, r,— 8Z1Fc,*||1,00((5,z)3) <cLnL™", Vn>1>3,Vm=>0

where 0. is a continuum partial derivative, 9s, is a forward lattice partial derivative in
(6,7, and the dependence on the direction vectors have been suppressed. For 5, and 9" a
multi-index convention is implicit.
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932 PK. Mitter, B. Scoppola

Remark The theorem is for the most part a combination of results obtained in various the-
orems in [8]. Before we outline the proof note that in [8], L was a large dyadic integer
whereas we have chosen here L to be triadic. The results of [8] remain unaffected provided
we define the continuum cube U.(R) C R? in Sect. 1 of [8] to be (—?, ?)3. This guarantees
in particular that if R = R,, = L=, 0 <m < n, and U;, (R,,) = U.(R,,) N (8,Z)> then
the important property 0Us, (R,,) C 0U.(R,,) remains true. This last property is invoked in

Sect. 6, p. 439 of [8], in preparation for the convergence proof therein.

Proof The multiscale expansion in part (1) and the finite range property of part (2) were
given in Sect. 4 [8]. The factor 6 in the range 6L of I', is an artifact. By scaling down
R,, in the cube Us, (R,,) by a factor of 3~* and the range of the function g in Sect. 1 to
379L we get T, to have range L /2. Convergence of (1) in L>(Z?) follows on using d; > 0,
Corollary 5.6 of [8] and the Sobolev embedding inequality for lattice L} = H; spaces with
k in the corollary sufficiently large. Part (3) follows from (5.10) of Theorem 5.5 of [8] by
integration on a with the measure da a~%/? (see (4.3) of Sect. 4). Corollary 5.6 of [8] and
lattice Sobolev embedding gives (5a). Corollary 6.2 of [8] gives parts (4a) and (5b). The
convergence rate estimates of parts (4b) and (5c) which were not given in [8] also follow
from the results therein. The proof is given elsewhere [12]. |

Remark (4b) is not necessarily the best possible estimate. The left hand side has no singular-
ity at p = 0 whereas the right hand side does. However it suffices for our purposes because

(5¢) above follows from (4b) and it is (5c) which will be put to use later. In fact (4b) implies
that for fixed/ >3 and alln > 1,k >0,

T, — FC'*||L/£((5/Z)3) =< Ck,Lqu"

where L ,1(((81 Z)%) is a lattice Sobolev space. The finite range of I',,, T, . and lattice Sobolev
embedding for kK > 3 + m implies (5¢). The singularity at p = 0 in the right hand side of
(4b) is integrable in B, . It thus turns out to be harmless.

Define for all n > 0 the positive definite functions C,,, C, . on (8,Z)* and R? respectively
by the recursion relations

C,(x)=T,(x)+ L_Zdlcn+l(%) (1.54)
Con(x) =Ty (x) + L2 C(%) (1.55)

Solving these relations by iteration gives

Co(x) = ir% rw(%) (1.56)
=0
o0 i x
Conlr) = ;L VT (25) (157)

Note that Cy = C as follows from (1) of Theorem 1.1.
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Corollary 1.1 The series 1.56) for C, together with that for its multiple lattice derivatives
in (8,7, converge in L*®((8,7)%). For every integer m > 0 we have a constant cL.m Such
that

||3,§: Coll Lo(s,2%) < CLm (1.58)

The series (1.56) defining C. . and its multiple continuum derivatives of arbitrary order
converge in L°°(]R3) so that C. , is a smooth continuum function. For all m > 0 and 0, the
continuum partial derivative

sup 3" Ce«(x)] < cpm (1.59)

xeR3

Moreover for n > 1 > 3 with | fixed and Ym > 0, there exists a constant cy, ,, such that
||3§',’Cn - a;ncc‘*”LOO(((slz)?) =CL mqun (1.60)

Proof The first part together with the bound (1.58) follow from (5a) of Theorem 1.1. In fact
from (1.56) we have

(o)
2jds 7 —mj by
Co= YL L@ T (15)

where we have used repeatedly (m-times) the identity 35, 't (55) = L (95, D) G)
as is easy to show. Therefore
(85 0t j n+/)( )‘

@, i) )

—2jds 7 —
185, C. ||Loo<<a,lz>><ZL FL7 sup
j=0 YCG((S,;Z)3

o0
< § :LfZJd.chMJ sup
i ye(3n+jZ)3

Now use the bound in (5a) together with d; > 2 to get (1.58). To prove the next statement
observe that the first part of Theorem 6.1 of [8] together with Sobolev embedding implies
that || Fvv*”Lw R = < c1.m- Using this (1.59) follows from (1.57). Finally to prove the

estimate (1.60) observe that
X WL
@ n+,)< ) G4 c*)< )‘

(95,

Sntj

] —2jdg 7 —
195" C = 8" Cell o2y < Z L2 mi up
=0 xe(§;2)3

< § :L 2]dSL mj sup
j=0 ye@i4,;72)3

Lue ) = 8 Cea )

o0
< L—"ch,m § L~ 2ids p—mi —jq
Jj=0

where in the last line we have used part (5c) of Theorem 1.1. Equation (1.60) now follows
with a new constant ¢, ,,. This also establishes that 857 C,— 9"C. in L>®((8,2)3). O

We consider the finite sequence of compatible lattices {(8,Z)3} for 0 <n < N. The con-
siderations in Sect. 1.1 for fields in Z> remain valid for every lattice (8,7)> provided for the
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expectations we replace the covariance C by C,. Let the fields ¢, ¥, ¥ be defined in (85Z)>.
These fields restrict to the coarser lattices (8,7)> for every n with0 <n < N.
We introduce a parameter ¢ with 0 < ¢ < 1 and define

3+¢
= 1.61
o 3 (1.61)
Let x € (8,Z)>. For every n < N — 1 we define the scale transformation S; by
S ®(x) =D, -1 (x) =L"‘]S<I>(%) (1.62)
where
3— 3—
g =B _3-¢ (1.63)
2 4

is the dimension of the field ®. The fields ¢, @, ¥, ¥ are thus assigned the same dimension
d, and the same transformation law 1.62. Note that the scale transformed fields now live in
(CVAR

Let A C R? and As, = AN (S, 7)3. We define the scale transformation on functionals of
fields by

(SLF)Y(L7'As, ., ®) = F(As,, SL®) (1.64)

n+1°

The C, and I',, are positive definite and therefore qualify as covariances of Gaussian mea-
sures. For x, y € (8,7)* we define the scale transformation of the covariance C, by

SLCoii(x — y) = L*”xcm(%) (1.65)

which permits us to write 1.54 as
Cix =y)=Tux =y) + S.Copi(x —y) (1.66)

Let A, C (8,Z.)* be a bounded subset. Then (1.66) implies upon using (1.27) (with C
replaced by C,) that

/ducn(CD)F(Aan,<1>):/d//«ch,m(fD)/ern(é)F(Aan,é:+<I>) (1.67)

m

Let L = 37 with integer p > 2 and let A,, = (—%, 5 »® C R? be an open cube in R?

centered at the origin. We denote by
Am,n =AnN ((SnZ)3 (168)

the induced cube of side length L™ in (8,73 centered at the origin. Let Fy(A No, D) bea
functional of ® and (®) belonging to Q°(A y o). By virtue of (1.67) we have forn =0

/dﬂco(‘D)Fo(AN,o,¢‘) :fdﬂcl(dD)Fl(AN—l,l , @) (1.69)
where

Fi(Ay—11, ®) = (Sppry * Fo)(Ay-1,1,P) = /dMFO(S)FO(AN,Oa$+ SL®)  (1.70)
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The final scale transformation takes us to a finer lattice as well as scaling down the size of
the cube.
The iteration of (1.70) using (1.69) gives after n steps

/-d/'LCOFO(ANA,O s CD) =/dMC,1 Fn(AN—n,n s CD) (171)

where
Fn(Aan,n B q>) = Mr,_ * anl(ANfrH»l,nfls SLqD) (172)

Equation (1.72) defines for N > 0 fixed and 1 <n < N — 1 a sequence of maps
TN—n,n : QO(AN—n+l,n—1) i QO(AN—n.n) (173)

any member of which we call a renormalization group (RG) transformation. The map is
clearly not autonomous. The first index refers to the cube whose size has gotten reduced
because of the rescaling. The second index refers to the lattice spacing which has gotten finer
because of the rescaling. In the following we will apply the RG transformation iteratively to
the (interaction) density Zy(Ay o, P) of the measure duy o(P) defined in (1.37) generating
thereby the sequence Z,(Ay_,.,, ) for 0 <n < N — 1. After N — 1 steps we arrive at
Zy_1(A1n_1, ) where A y_; is the cube of edge length L in (8y_17Z)* centered at the
origin. The fundamental goal in this paper is to control this sequence of transformations
when N is indefinitely large in the infinite volume limit (as explained at the end of Sect. 3).

1.3 Polymer Gas Representation

In order to analyze the RG evolution we will write the densities Z, in a polymer gas repre-
sentation whose form is preserved under RG transformations.

Polymers We pave R? with a disjoint union of open cubes A C R® of edge length 1 called
unit cubes or 1-cubes defined by

1 1 1 1 1 1
A= <—§ +m1, E +m1> X <—§ +m2, 5 +I’VZ2> X <—§ +m3, 5 +I’VZ3> (174)

where (mi,m,, m3) € 73. We say two unit cubes from the paving are connected if their
closures share at least a vertex in common. If they are not connected (i.e. their closures are
disjoint) we say that they are strictly disjoint. A continuum (connected) 1-polymer X is a
(connected) union of a finite subset of unit cubes chosen from the paving and is thus open.
Henceforth, unless otherwise mentioned, a polymer is connected by default.

We will measure distances in R* and in all embedded lattices in the norm

e =yl = max |x; =yl (1.75)
If A; and A, are two unit cubes from the paving then the distance between them is

d(A|, Az) :x inf

€Ay, ye

NERS (1.76)
If A, and A, are strictly disjoint than d (A, A;) > 1.
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Let , = L™" where L = 37 is a triadic integer. Let § be any member of the sequence
{8, }n=>0- Define the unit block or 1-block in (87Z)* by

As=ANGBZ)> 1.77)

and the lattice 1-polymer X by
X; =X N (8Z)° (1.78)

where X is a continuum 1-polymer. Note that as point sets Xs, C X, ;-

We denote by | X;| the volume of X5 measured in accordance with (1.25). The 1-blocks
are lattice restrictions of the open continuum unit cubes defined above. Therefore, as is easy
to verify, |As,| =1 and

[ X5, =8{As, © As, C X5} (1.79)

the total number of 1-blocks in X, . This is equal to | X| the total number of 1-cubes in X
by our construction. As a consequence we have | Xs, | =X, |

We say two 1-blocks in Xs are connected if the continuum 1-cubes of which they are the
lattice restrictions are connected (see above). If the 1-blocks are not connected we say that
they are strictly disjoint. The distance between two strictly disjoint 1-blocks is > 1. The
lattice (connected) polymer X; is a (connected) union of a finite subset of disjoint 1-blocks
As. Let X5 and Y5 be each a connected polymer. We say that X5, Ys are strictly disjoint if
they are mutually disconnected i.e. if every 1-block from X is strictly disjoint from every
1-block from Ys. Then the distance d (X5, Ys) > 1.

Given an integer n > 1 we define the n-collar of X;, denoted 9, X5 by

I Xs={y ¢ Xs :|x —y| <né, somex € Xs} (1.80)
where | - | is the distance function inherited from R*. We define
XM =X5U8,X, (1.81)

Let f : (8Z)* — C. We define the forward lattice partial derivative 35 , and the backward
lattice derivative 95 _,, by

. f () =87 (f(x +8e,) — f(x)) (1.82)
s f(x) =85, () =8""(f(x = 8e,) — f(x)) (1.83)

where ey, e, e3 is the standard basis of unit vectors which provides the orientation of R?
and thus of all the embedded lattices we will encounter. 9; , is the L>((87Z)*) adjoint of 95 ,.

Polymer Activity A polymer activity K (X5, ®) = K (X, @, V), where it is henceforth un-
derstood that it also depends on @, ¥, is a map X5, ® — Q° % where the fields ¢ depend
only on the points of X (2).

The polymer activities of this paper are of degree 0, gauge invariant and supersymmetric,
and invariant under translations, reflections and rotations which leave the lattice invariant.
In addition they satisfy the condition K (X5, ®) = K (X5, —®) together with the support

condition: K (X5, ®) =0 if X is not connected. Furthermore K (Xs,0) =0
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We write the generic density Z(A;)(®) in the form

o] N
1 _ (c)
Z(As) = E me Vs E HK(XS,_/') (1.84)
N=0 """~ X515 X5 N j=1

where the connected polymers X ; C A; are strictly disjoint, X5 = U’lv Xs. ), X§C> = A5\ Xs

and V (Y;) =V (Ys, ®, C, g, ) is given by (1.35) with parameters g, u and integration over

Ys with measure dx defined as the counting measure in (§Z)° times §°. The Wick order-

ing covariance C = C, (see (1.56)) if § = §,. We have suppressed the field dependence in

(1.84). Initially the activities K vanish but they do arise under RG transformations. The

representation (1.84) remains stable under RG transformations as we will see in Sect. 3.
Polymer activities K(Xs, ®) = K (X5, ¢, V) € Q%(z) can be represented uniquely as a

8

(finite) series in the fermionic fields 1, ¢ with coefficients which are functionals of the
bosonic fields ¢:

1 2 Ld -
K (X5, ®)=K(X5,0,¥) = ZO )2 /ngxg dxdy (D" K) (X5, ¢, X,y) 1_[1 vV (x)Y(y;)
p= J=
(1.85)
where X = (x1,...,x,), y= (y1,...,y,) and dx = I—[?ﬁldx,- where dx; is the count-
ing measure multiplied by §> on (§Z)*. y and dy are similarly defined. The coefficient

(D K)(X;, ¢, %, y) is defined by

p—1
9 9
D¥ K)(Xs,0,X,y) = _
(DY K)(X5.9.%.¥) Qaw(y,,,ﬂaw(x,,,,-)

K(Xs, 0, 9) i (1.86)

This defines a lattice analogue of a distributional kernel which is henceforth restricted so
as to contain at most (lattice) delta functions and their first and second (lattice) derivatives.
It is clearly antisymmetric in (xy, ..., x,) and in (yy, ..., y,). It is gauge invariant as is the
Grassmann monomial of degree 0.

The polymer activities in question also satisfy

K(X5,00=0 (1.87)

Remarks We will see that the representations (1.84), (1.85) are preserved by renormalization
group transformations. The RG transformations are gauge invariant, preserve supersymme-
try by virtue of (1.45), as well as the vanishing condition (1.87) by virtue of Lemma 1.1.
The RG transformations preserve invariance of the polymer activities under translations,
reflections and rotations which leave the lattice invariant.

2 Regulators, Derivatives and Norms

In this section we will introduce Banach spaces of polymer activities. These are lattice ana-
logues of the continuum constructions in [1, 6, 13] albeit with changes because of the pres-
ence of Grassman variable. The Banach space norms that we will presently introduce mea-
sure differentiability properties of the activities with respect to fields ¢, ¥, as well as the
behaviour with respect to large fields d¢ and large sets. The behaviour for large ¢ itself will
be controlled with the help of lattice Sobolev inequalities and the local potential.
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2.1 Regulators

Let 95, and 95 _, be respectively the forward and backward lattice derivatives in (8Z)*
along the unit vector ¢, defined in (1.82) and (1.83). Here as before § is any member of the
sequence {3,} where 8, = L™" and L = 3” with integer p > 2. Define

8;{1,#2,.“,#/ = 354,/41 85,#2 T aa,uj
Let X be a connected polymer in R? and X5 = X N (87)3. Let )~(§") = X5 U0,X; as defined
earlier (1.80) and (1.81)). Let ¢ : )?;5) — C. We define a norm || - || x;,1,5:

5
1 )
lelas=2" 5 D / dx 3,y 0O @1
j=1

wjes,vj Xs

where S = {1, —1,2, —2,3, —3}. This is a lattice Sobolev norm of the type introduced in
Sect. 5, p. 421 of [8] but now without the L? piece.
We define now the large field regulator

G : X5 x Fyo) — R 2.2)
8
where F ;) is the algebra of C valued functions on X ;5) by
8

2
G, (X5, ) = 19lx5.15 (2.3)
G, satisfies the multiplicative property: If X, Y5 are disjoint sets then
Ge(XsUYs5,0) =Ge(Xs,9) G (¥s, 9) 2.4

G ! will be a weight function in polymer activity norms. The norm || - ||, 15 can be used in
lattice Sobolev inequalities, in conjunction with the stability provided by the local potential,
to control ¢ and its first two lattice derivatives pointwise. The parameter x = x (L) > 0 is
chosen so that for all L > 2 the large field regulator satisfies the stability property given in
the following Lemma:

Lemma 2.1 (Stability property) There exists a constant kg = «ko(L) > 0 independent of n
such that for all k with 0 < x < g

/durn(é) G(X5,, ¢ +9) <2M1Gy (X5, 9) 2.5)

where | X, | is the number of unit blocks in X, .

Proof Equation (2.5) is proved in exactly the same way as in the proof of the stability prop-
erty of the continuum large field regulator in Lemma 3 of [6]. The proof uses a flow equation
for the measure convolution with interpolated covariance which remains true for the lattice.
Another ingredient is Young’s convolution inequality for functions which is also true on the
lattice. In the cited proof we replace the covariance C by I',, and continuum derivatives by
lattice derivatives. From the proof of Lemma 3 of [6] we see that two conditions have to
be satisfied by o, namely: (1) ko maxa<m<10 [195, I ll 005,23, 18 sufficiently small and (2)
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kollTnll L1 ((s,2)3) 1s sufficiently small. Parts (5a) of Theorem 1.1 shows that (1) and (2) above
can be assured by a « independent of n. From (5a) we have

Ko max |[0f'T < KkoC
ozngmH 5, LIl Loo (5, 2)3) < KoCL

and from (5a) and the finite range property
3
K()”Fn ||L1((5nZ)3) < koL C,L

It is sufficient to choose k¢ so that the right hand side of both inequalities are sufficiently
small. This is achieved independent of n. ]

Now hold L = 37 sufficiently large by taking p large. Recall that o = 3% where 0 <
& < 1 sothat o < 2. Then we get after rescaling

[ e 6us 4 519) <2HGL Ko, 0 26)
because from the scaling property of the fields ¢, see (1.62), (1.63) we have
1Se @l 15 = L7 Neli-y, s 2.7)

Next we introduce a large set regulator. Let X5 be a connected 1-polymer in (§Z)3. This is
a connected union of 1-blocks defined earlier. We define

_Ap (Xs) = 2PIXsl p (D+2)|Xs] (2.8)

where for us the dimension of space D =3, and p is an integer.

Small sets: We call a connected polymer X5 small if |X;| < 2P. A connected polymer
which is not small is called large.

L-polymers and L-closure: Pave R? by a disjoint union of open cubes L A of edge length
L, called L-cubes:

L L L L L L
LA = (—5 +m L, ) +m1L> X <—§ +m,L, 7 +m2L) X <_§ +msL, £} +m3L>
(2.9)
where (m, m,, m3) € 7>. Bach L-cube is a union of 1-cubes. Let § be any member of the
sequence {3, },>0 where 8, = L™, L =37 and p > 2. Take the restriction of these L-cubes
to (8Z)3 and call the latter cubes L-blocks. Each L-block is a union of 1-blocks. The paving
of R? by L-cubes induces a paving of (8Z)3 by L-blocks. An L-polymer is a union of
L- blocks. We define the L-closure of the 1-polymer Xs, denoted }ng, as the L-polymer
given by the smallest union of L-blocks containing X;s. The notions of connectedness and
strict disjointness carry over from the case of 1 blocks and 1-polymers. Thus we say two
L-blocks from the L-paving are connected if the closures of the corresponding continuum
L-cubes are connected (i.e. share at least a vertex in common). If they are not connected we
say that they are strictly disjoint. Strictly disjoint L-blocks are separated by a distance > L.
A connected L-polymer is a connected union of L-blocks. If two connected L-polymers are
not connected to each other we say they are strictly disjoint. Strictly disjoint L-polymers are
separated by a distance > L.

@ Springer



940 PK. Mitter, B. Scoppola

Lemma 2.2 Fix any integer p > 0 and let L be sufficiently large depending on p. Then for
any connected 1-polymer X

AL X" < e A (Xy) (2.10)
For X5 a large connected 1-polymer,
AL XY < e, 7P AL (Xy) 2.11)
Here ¢, = O(1) is a constant independent of L and §.

Remark This is the lattice version of Lemma 1 of [6]. It is purely geometrical and proved in
the same way.

2.2 Field Derivatives and Norms

The polymer activities in question are degree 0 gauge invariant supersymmetric functionals
of the complex bosonic fields ¢, ¢ and the fermionic fields v, 1. Lattice field derivatives
are partial derivatives with respect to the fields at different points of the lattice. The fermi-
onic derivative is an antiderivation. However in order to measure the size of the lattice field
derivatives it turns out to be useful to generalize the notion of field derivatives as directional
derivatives (directional in field space). For the bosonic coefficient this is the lattice transcrip-
tion of that given in [6]. For the fermionic part there is no clear sense of direction and the
definition we give below suggested to us by David Brydges is both natural and useful.

Let X5 C (8Z)° be a connected polymer. Let f ; for j=1,...,m be C valued func-
tions on )2;2). Let g,(x,y) =: g2p(x1,...,Xp,¥1,...,¥p) be a C valued function on
(X gz))p x (X ;2))p, antisymmetric in the x; and in the y;. A polymer activity K (X5, ®) has
the representation (1.85) with the coefficients defined in (1.86). We consider it as a function
of ¢, @, ¥, ¥ denoted as K (Xs, ¢, ) where we have suppressed the dependence on ¢, V.
We define using the notations of (1.85), (1.86) for the coefficients,

D*P"K (X5, 9,0 [, 82,)

=:fp pdxdyDgDip(X(;,(p,x,y;fx”’)gzp(xl,...,xp,yl,...,yp) (2.12)
X(S XXB

where f*" = (fi,..., f) and
DD Kap (X5, 0. %, y: f™)
= le e aSm D??pK(X(Ss @+ S51f15 s @+ S s X, y)|s|:~-=sm=0 (2.13)

and the s; are real parameters.

Let 95 ,, 05—, be the forward and backward lattice derivative in the direction e,,. Let the
index set S be defined as after (2.1). We endow the linear space of C valued functions f as
above with the norm

1 fllc2xsy = sup (L fllzoecx s 195,50 S oo xsys 195,.05.0 f oo (x5)) (2.149)

Wn,veS

and call the resulting normed space C?(X).
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Let 35,5, ) €S, acting on g,(x,y) denote the forward or backward lattice derivative
with respect to x; or y; in the direction e,,,. We endow the linear space of C valued functions

gp(X,y) on (f(éz))P X (f(éz))P , antisymmetric in the x;, and in the y;, with the norm

I2plle2oin, = SUP 82l mzny 195,800 mizny 19,05 83pl i) 219)
o €8
1<j.k<2p

and call the resulting normed space Cﬁ (X?” ). The above norms always exist for lattice
functions since X is a finite set.

Equation (2.12) then defines a C valued multilinear functional on C?(X;)" x Cj(X 5” )
whose norm is defined to be

ID*"K(Xs5,0,0)|=  sup  |D*"K(X5,0,0; ", 82,)|  (2.16)
W2 g <)

llg2p <1
2p C2(X§P)

Yi<j<m

The space of C valued multilinear functionals defined in (2.12) which are bounded in the
norm (2.16) is complete and thus a Banach space.

Remark 1t is well known that the space of bounded C valued multilinear functionals on a
normed space is complete (even if the normed space is not). The completeness follows on
using the completeness of the number field C by a standard argument.

Let h = (hp, hp) where hp,hg > 0 are strictly positive real numbers. We define the
following set of norms. The h norm is defined by

oo - Mo 2p ym
hy
||K(x5,<p,0)||h—22 ,)2—||DZP'"K<X5,¢ 0 2.17)

p()m()

In addition we define a kernel norm with h, = (hp, hpy)

oo mo 217 m
h
K (X5)ln, = ZZ o e 107K (X5,0.0)] 2.18)

pOmO

h, h, will be chosen later in Sect. 5. We now define the h, G, norm by

IK(X)lne, = sup [IK(Xs. 0. 0)lnG" (X5, ) (2.19)
WG}—)-(ES)

Let A(X;) be the large set regulator defined earlier. We then have our final set of norms

1K lInGeas =sup Y [I(K(Xs)lnc, AXs) (2.20)

As XsDAs
where A; = A N (8Z)% and A is a unit cube in R? as defined earlier, and

|K |n,, 4,5 = sup Z |K (Xs)|n, A(Xs) (2.21)

As XsDAj
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The index § in our final norms (2.20) and (2.21) indicate that the large set norm is being taken
over polymers in (8Z)3. Under each of above norms we have Banach spaces. Moreover it is
easy to verify that the multiplicative (Banach algebra) property holds for the polymer activ-
ities K (X;s) under the h-norm (2.17), the kernel norm (2.18), and, for activities supported on
disjoint polymers, under the h, G, norm. The multiplicative property plays a very important
role in the estimates in the rest of the paper. We therefore state it as Proposition 2.1 below
and supply a proof.

Proposition 2.1 Let X; 1, X;s2 denote two connected polymers. Let X5 = X5, or X5 N
Xs2=0.K;(Xsj,0,¥), j =1,2 are polymer activities of degree 0. Define a new polymer
activity

K(Xs5,1 U X52,0,%) = Ki(Xs,1,0, V) K2(Xs.2, 0, %)

Then
1K (Xs,1 U X52,0,0)n < |1Ki(Xs,1,9,0)[Inll K2(X52,9,0)In

The same inequality holds for the h, norm. If X5 1 and X, » are disjoint we have
IK(X5,1 U Xs2)ln6e < I1Ki(Xs,0)In6, 1 K2(X52) lIn,G,

Proof Let fj, j=1,...,m be functions on f(;zf U f(f;z% and g,(X,y) = g2p(x1, ..., %,
Yi,-.-,¥p) be a function on (f(ng U X;?;)P X (f(ng V) f(g)l’ = (f(;zf U }?gg)zl’. &2p 1s anti-
symmetric in the x; and in the y;. By definition

2, 2. :
D" K (X510 U X52,0,00l = sup |IDP"K(Xs5,1 U X52,9,0; 7", 82p)]
HfjHCz(Xs,IUXB,ﬁSI
ngl’”cz((xévlUX&Z)ZI’)SI

where " = (f1, ..., fu)» f*M ={fi}iew and M C {1,2,...,m}. We extend the coeffi-
cients of K;(Xs j, ¢, %), j =1,2to X5 U X;, by declaring that they have supportin X ;.
Now Dip is a partial (anti) derivation of order 2p. D%’" a derivation of order m. Distributing

Dip and D" on the product of polymer activities gives

DU DYK(X51 U X520 @0, K10 e es Xps Via e os p)i f5)

= Z Z Z Z Dngilel(Xa,l,(ﬂ»Xl,YHfXMl)

p1t+pa=pmi+my=m M{UMy={l1,...m} [,JC{l,..p}
M NMy=f) H=11=py
|My|=my,|My|=my

x DR DY Ka(Xs0, 9, Xpe, y e £

X 82p (X1, Xye, ¥, ¥e) X (=1)F (2.22)
where (—1)% is a sign factor which plays no role in the norm bounds to follow, I, J¢ are
respectively the complements of 7, J in {1, ..., p}. We have |I°| = |J¢| = p,. We now inte-
grate this with respect to x1, ..., X, y1,..., ¥, in (Xs1 U X;52)P x (X5, U X;5,)?. Because

of the support properties of the coefficients the integral splits over the products on the right
hand side. We get
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D*P"K(Xs1 U Xs2,9,0; ™", g2,)

DD SEEED SRR DR W

p1+p2=pmi+mpy=m M{UMp={l,..m} I,JC{l,..,p} 8.1
MjNMy=( =J1=py
|My|=my,|May|=mp

X /2p2 dXI"dYJ"DZID?TmKI (Xs.1, 0%,y £
X5.2

X DgzDiszz(X5,27 @, Xpe, Yye, fXMZ)

X 82p(Xp, Xpe,¥7,¥ie) X (—1F (2.23)

2p;j pj Pj
where X/ = X", x X;7;. Define

~ m 2
&op (X1, ¥)) = /Zm dxyedy ;e D2 D Koy (X5, 0, Xpe, Yie; M) g0, (X1, Xpe, ¥, ¥ ¢)
X

8,2

= D™ Ky (X52,9,0; 82, (X1, -, ¥, ), fM2) 2.24)

where the dependence of g,,, (X7, y,) on Ky, X5, pa, f *M2 has been suppressed. Note that
82p, (X7, ys) is antisymmetric in the {x; : i € [} andin the {y; : j € J} and therefore qualifies
as a test function.

From (2.22) and (2.24) we have

D*P"K (X5, U X52,9,0; ", 82,)

-y Y Yy oo

p1+p2=pmi+may=m M{UMy={1,...m} I,JC{l,..p}

M NMy=0 =I/1=py
|My|=my,|My|=my
x (X1.5,9,0; M, 85, x (—1)F (2.25)

Therefore
ID*"K (X5 U X52,9,0; £, g2)]

<y ¥ > Yo DMK (X5, 0,0)]

pitpa=pmi+my=m M{UMy={l,...m} LJC{l,...p}
M{NMy=§ 11=171=p}
|My|=my,|Mp|=my

x [T 1fillcroe 18201l 2o, (2.26)

ieM;
From (2.24) we have for 0 <k <2
ks — D2p2.m2 . ak x Mo
05 82p, X7,¥y7) =D Ky(Xs52,0,0; 0582, Xs, -, ¥7,°), f772)

where 9} is the lattice partial derivative of degree k with respect to x;,y; in multi-index
notation. Whence

18882, (X1, ¥ < IIDP2"™ K5 (X5, 0, 0)| ]_M[ I fillc2cx, 1105 85 (X1, ¥ ~)|IC2(X§52)
JEM2

@ Springer



944 PK. Mitter, B. Scoppola

and therefore

12l apzm, < 1D Ko (X2, 0, O TT I fillczons o lonll aprn yomy  227)
! o X

Now X?gz X X;”I‘ C (X5 U X5.1)?P where p = p; + p,. Therefore from (2.26) and (2.27)
we get

| D*P"K(X5,1 U Xs2)l

<y Y > Do DMK (X 5,0,0)]]

p1+pr=pmi+my=m M{UMy=(l,...m} [,JC{l,..,p}
MNMy=0 =1/1=py
|My|=my,|Mp|=mp

x | D*P2"2 K5 (X5 5, ¢, 0) ||

Now
D S T
i mo! N2( p,12
M{UMy=(1,...m} 1,JC(l,....p} milma! (pih=(p2!)
MNMpy=f I11=1/1=p)
|My|=my,|My|=my
Therefore

ID*"K(Xs,1 U X5, 9,0

m! (p!)2 .
= > > 1D Ky (X1 .5, 0, 0)|

| | 2 N2
Lt p2=pmy+my=m L2 (p1)*(p2h)

x | D*P2"2 Ky (Xs 5, ¢, 0) || (2.28)

Multiply both sides of the previous inequality by A% /m! and hZFP /(pH?%. Sum over integers
m, 0 <m < my, and over all integers p > 0 to obtain

IK(Xs,1UX52,0,0n < 1Ki(Xs,1, 9, 0)Inll K2(X5,2, 0, 0)Iln

This proves the first inequality of Proposition 2.1. The second inequality follows from the
first because for union of disjoint sets

G (XsUYs5,0) =G (Xs5,0)G (Y5, 0) O

3 The RG Map

In this section we describe the RG map applied to the generic density in the polymer repre-
sentation given in (1.84). This is a lattice transcription of the continuum RG map described
in [13] (see also [12]). This goes in several steps. First we must perform the fluctuation
integration and rescaling (see (1.72))

Z' (L7 Ap-15.9) = Spr + Z(As, @) 3.1)

where As C (8Z)* is the volume arrived at after a certain number of previous RG steps
and I is the fluctuation covariance for the next step. I is one of the covariances I';, of
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Theorem 1.1 and has the finite range property stated in that theorem. Thus after n RG steps
(see (1.68)~(1.73)) 6 =8,, T =T, As = Ay_pnand L'A; 15 = Ay _p_10t1-

The polymer representation (1.84) for Z(Aj) is parametrized by the coordinates (V, K)
on the scale § where V is a local functional (potential):

V(Xs)= Y V(Ay) (32)

AsCXs

Let V(X s, ) be an arbitrary local supersymmetric functional with V(X 5,0) =0. We will
see that the polymer representation is preserved under the RG transformation (3.1) with new
coordinates V., F(K) on the next scale L~'8. F depends on V. The finite range property
of I' leads to a simple description of this map:

V= Vi, Vi(Ap15®) =(SLV) (AL 15, ®) = V(LAs, SL®)

(3.3)
K — F(K), f(K)(XL—la’q’)Z/er(%)BK(LXs,S,SL@)

where BK is a V dependent nonlinear functional of K to be presently described. We call
this map the fluctuation map.

We can take advantage of the arbitrariness of the local potential V in the above map so
as to remove the expanding (relevant) parts F' in the polymer activity F(K) and compen-
sate by a change V, (F) in the local potential V;, in such a way that the evolved density
Z'(L7'A;-15) on the left hand side of (3.1) remains unchanged. This operation gives rise to
the extraction map [6]

Vi, = V(F)=V, — V.(F), F(K) = K'=E(F(K), F) (3.4)

where the image is on the same scale L~'8. V/(F) and the nonlinear map £ have simple
expressions which are lattice transcriptions of those given in [6]. The composition of the
fluctation map (3.3) and the extraction map (3.4) gives the RG map

[ fV.K) = (fy(V.K), fx(V,K))
where

fv:V—>V,— V/(F)

fx: K — F(K)— K =EF(K), F)

(3.5)

The operation of extraction leads in particular to a discrete flow of the coupling constants
in V on scale L~'8 provided we choose F, VL (F) appropriately. The expanding functionals
will be gathered in the local potential V'(F) whereas the polymer activity £(F(K), F) will
be a contracting (irrelevant) error term.

3.1 The Fluctuation Map

We now construct the map (3.3) starting from (3.1) with the density in the polymer repre-
sentation (1.84). In performing the fluctuation integration

1 : ol
i % Z(As, @) = / dur®) Y 1me K00 3 [T 048 (6
N

X515 X5, N j=1
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we will exploit the independence of &(x) and &(y) when |x — y| > L. To this end we con-
struct an L-paving of As and the L-closure of X; Y of a connected 1-polymer X; as in the
paragraph preceding Lemma 2.1. The 1-polymers will be combined into larger connected
L-polymers which by definition are connected unions of L-blocks (for the relevant defini-
tions intervening here and in the following see the paragraph on L-polymers and L-closures
before Lemma 2.1). The combination is performed in such a way that the new polymers are
associated to independent functionals of &. This is the lattice adaptation of Sect. 3.1 of [13].
Define the polymer activity P, supported on unit blocks, by:

P(As &, @) =V Erit® _ o=V (40 (3.7)

with \7, to be chosen. V(A,;, D) is rgquired to satisfy V(Ag, 0) = 0. In the following V, K
has field argument & + ® whereas V depends only on ®. The dependence of P on &, ® is
as defined above. X§ = A; \ U;V:I X, is a union of disjoint 1-blocks Aj;. Therefore

e VXS — 1_[ [e_V(A‘*)—f-P(A,;)]

As CXg

Expand the product and insert the expansion into the integrand of in (3.6) which gives

N M
: 1 —V(X5.0)
integrand = Z N Z e 8,0 l_[ K (Xs,;) 1_[ P(As) 3.8)
N (X5,j),(As.1) Jj=1 i=l1
where X;50=As \ (UXs,;) U(JAs,). Let Y5 be the L-closure of (| X5,;) U (IJ As,;) and
let Y51, ..., Ys p be the connected components of Y;. These are L-polymers. Let f be the
function that maps 7 := (X5 ;), (As;) into {¥s 1, ..., Ys p}. Now we perform the sum over
(Xs,j), (As;) in (3.8) by summing over 7 € F'UYs1....,Ys.p}) and then {¥sy, ..., Y5 p}.
The result is:
1 N
integrand = ~i D e VDT BK () (3.9)
N (%, j=1
where the sum is over strictly disjoint connected L polymers and
| ) N M
— —V(Xs5.,0) . .
CISOE DB EED DR I L] | EL R EA )
N+M=1 (Xs,j),(As,))—>1{Y} j=1 i=1

where X50 =Y \ (UX;,;) U(JAs,;) and the — is the map f. In other words the sum
in (3.10) is over distinct A;; and disjoint 1-polymers X ; such that their L-closure is the
connected L-polymer Y.

We now perform the fluctuation integration of (3.9) over & followed by rescaling. Since
V(Y 5) is independent of £ the £ integration factors through and acts on the product of
polymer activities 1_[/ (BK)(Ys,;). A polymer activity (BK)(Ys, ;) belongs to QO(?B(i?). The
Y5 ; are strictly disjoint connected L-polymers and thus necessarily separated from each

other by a distance > L. The 2-collar attached L-polymers QO(Y;?) are therefore separated
from each other by a distance > L —4. The fluctuation covariance I" has finite range L /2 and
for L sufficiently large L — 4 > L /2. Therefore the fluctuation integration over the product
of polymer activities factorizes. We now follow this up by applying the rescaling operator
to both sides. This has the effect of bringing us back to 1-polymers but on the scale L™'§.

Therefore we obtain
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(Spur* 2) (L' Ap-14, D)

N
1 V(x€
_ Z ﬁ Z ¢ VLX) _15®) H/dﬂl“(%-)BK(LX&j’ S.9,8) 3.11)
N X ) j=1

where X; 15 ; = X; N (L™'8Z)* (as well as X; ; = X; N (8Z)*) are disjoint 1-polymers,
X ;= L7'"Ap—is\ U; X.-15,; and Vi(A;-15) = S, V(LAs). This gives the fluctuation
map (3.3): V — V;, K - F(K) with BK defined as above. At the same time we have
shown that the polymer representation is stable with respect to the RG transformation.

Consider

FOK) (X1, ®) = / dur (€)BK (LX5, &, S,0)

By construction BK is supersymmetric. Therefore since the supersymmetry operator com-
mutes with the measure F(K) is also supersymmetric. Now since P(As, &,0) and K (X5, §)
vanish for £ = 0 (the latter by hypothesis, see (1.87)) it follows that BK (L X5, &, 0) also van-
ishes for & = 0. Therefore by Lemma 1.1

F(K)(X;-15,0) = /dur(S)BK(LXg,S,O) =BK(LX;5,0,0)=0 (3.12)

Thus the condition (1.87) is satisfied by the new polymer activities. This implies in particular
that no field independent relevant parts are generated by the fluctuation integration as a
consequence of supersymmetry.

3.2 Extraction

Let 8 = L7'§ and let A’ = L' Ay. The fluctuation map gave us V,, F(K) as the coor-
dinates of the evolved density Z(A’). We want to change the local potential V, and the
polymer activity F(K) simultaneously such that Z(A’) remains invariant. To this end let
P(®(x)) be a local polynomial, which means that it is a polynomial in ®(x) for x € A'.
Furthermore we require that P(0) =0, i.e. P has no field independent part.

Given Ay a unit block in A’ we consider a change in VL(A(;/) of the form

W@ =Y [ drarwp@w) (3.13)
P Ay

where the sum ranges over finitely many local polynomials and, for each such P, ap(x) has
the form

ap@)= ) ap(Xy.x) (3.14)
XgDx

such that ap(Xy,x) =0if x ¢ Xy, ap(Xs,x) =0if Xy ¢ A’ and ap(Xs,x) =0 if Xy
is not a small set (see definition after (2.8)). The corresponding change in F(K) is given in
terms of the relevant parts

F(Xa',‘D)ZZ/ dx ap(Xy, x) P(D(x)),
Py (3.15)

Ft a0 =Y [ dxan(ts np@)
P

Ay

Note that F(Xs,0) =0.
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Extraction Map

Theorem 3.1 (After Brydges, Dimock and Hurd [6]) Given F, 1 (F) as above there exists
a polymer activity which is a non-linear functional E(F(K), F) of F(K), F such that

L— V' (F)=V, —V.(F), F(K)—> K'=E(F(K), F) (3.16)

preserves the polymer representation for the density Z(A') with new coordinates (V', K')
satisfying V'(F)(Ay,0) = K'(Xy,0) = 0. Let £ denote the linearization of €. Then the
linearization of the extraction map is given by

E(F(K), Fy=F(K)— Fe't, V(F)=V, — V.(F) (3.17)

We say that Vy is stable with respect to perturbation F if there are positive numbers f(X)
such that

” o~V @) =Xy oay AOF Xy By)

<2 (3.18)

h,G, —

for all complex numbers z(Xg) with |2(Xs)| f(Xs) < 2. Assume that V. is stable. Then
E(F(K), F) is norm analytic and satisfies the bounds

IEFK), F)lnceas = OMUFE)InGe.a.s +I11Lf llas.e) (3.19)
IEF(K), F)lnas = OMUFE) a5+ 1 43,6 (3:20)

Proof This is a restatement of Theorem 5 in Sect. 4.2 of [6] with the substitution (VL, F(K))
for (V, K), adapted to the lattice. The proof of Theorem 5 exploited Lemmas 10, 11, 12, 13
the last of them providing the extraction formula in (121), p. 781 of [6]. In [6] the continuum
unit blocks are open. Our lattice unit blocks are lattice restrictions of continuum open unit
cubes. Overlap connectedness is replaced by connectedness. With this in mind the proofs of
Lemmas 10, 11, 12, 13 go through intact on the lattice providing the extraction map above.
The estimates in Theorem 5 on the norms of £(K, F) together with norm analyticity remain
valid on the lattice. g

Remark The stability property (3.18) is proved in Sect. 5 once we have chosen V appropri-
ately. The estimate (3.19) on the extraction operator £ plays an essential role and is exploited
in Sect. 5.

Formal Infinite Volume Limit We reestablish the notations leading to (1.73). Choose
§ = (Sn, I = Fn, § = L_15 = 8,1+1. A5 = AN—n,ln A,g/ = AN—n—l,lH—l and F = Fn+l in
(3.3). The RG transformation Ty_,—1 ,+1 of (1.73) induces the RG map fn_n—1,+1(V, K)
of (3.5) for the coordinates of the density Z,_;(Ay_,,) in the polymer representation.
ap(Xs,.,,x) in (3.14) is chosen later in Sect. 4. This choice will be local, in the sense
that it is determined by VL(A5H+1), As,., C Xs,,., and by F,1(K)(Xs,,,). Lemma 13
and (112) of [6] imply that &(F,1(K), F))(Xs,,,) also is local: it is determined by
Furt(K)(Ys,.,), Ys,,, C X5, and Vi(As,,,), As,,, C Xs,,,, where X, is a neighbour-
hood of X;,.,, namely the union of X;, , with all small sets that intersect X, . Therefore
the K component of the map fy_,_1,+1 representing the action of the n + 1th step of RG,
namely fy_,—1..41.x (K, V)(Xs,,,, ®) is independent of N for all N large enough so that
AN_n_1,41 cONtains X(;jm. Thus limy oo fn—n-t1.n41.5 (K, V)(X;s,,,, P) exists pointwise
in X, ,. In this paper we are studying the action of this pointwise infinite volume limit
called the formal infinite volume limit.
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3.3 Appendix

We record here some definitions which have either already been used or will be used later.
The object is to be able to move scaling past fluctuation integration.
We define for x, y € (L~'8Z)3 and any covariance u on (§Z)3

up(x —y) = Sp-u(x —y) = L*u(L(x — y)) (3.21)

Since the fluctuation covariance I" defined on (§Z)* has finite range L/2 we have that '
defined on (L~'87Z)* has finite range 1/2. We recall from Sect. 1.3 that a polymer X; is
defined by X; = X N (8Z)> where X is a continuum polymer. We define the rescaling of
polymer activities by

SLK (X 15, @) = Kp.(X 15, @) = K(L X5, S. D) (3.22)

We write the fluctuation integration of the polymer activity K (X;, ®, £) with respect to ur
as

K*(X5, ) Z/dur(S)K(Xs, ,8) (3.23)

We write the fluctuation integration of the polymer activity K (X -15, ®, £) with respect to
Ur, as

KX, 1y, ®) = / diir, (VK (X1, . €) (3.24)
‘We define

S, =88 (3.25)

With these notations it is easy to see that the fluctuation map can be written as

F(K)(X 15, ®) = (BK) (LX;, S.P) = (SLK) (X -15, D) (3:26)

4 The Renormalization Group Map Applied

In this section we specify the RG map of Sect. 3 by making choices for the local potential V,
and relevant parts F. V is chosen via first order perturbation theory. F is chosen so as to
remove the expanding part of the fluctuation map. This is the extraction step. This will be
done in second order perturbation theory as well as in the error term. We will follow closely
the strategy in Sect. 4 of [13]. We will use the notations established in the Appendix to
Sect. 3.3, (3.21)—(3.26). We take 6 =§,,, I' =I',,. Recall that, see (1.61), « = 3% where we
take 0 < & < 1. The field scaling dimension is d; = % see (1.62), (1.63).

We assume that starting from the unit lattice where only the local potential (1.35) is
present n steps of the renormalization group map has been carried out. This produces a new
local potential
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‘/n(AB”’ qD) = V(Aﬁns qu Cnv 8n» ,un)

= g / dx:(DB)’ ()¢, + / dx(®P)(x) @.1)
Asy As

n

together with a polymer activity K, supported on connected polymers in (8.Z)3. Note that
(PP)(x) =:DD:(, (x) by virtue of (1.31). We write K, in the form

K, = Qne_vn + R, (42)

where Q, is a polymer activity which is given by second order perturbation theory in g
assuming that 1 is O(g?). Q,, is specified below. R, is the remainder which is formally of
0(g%). Q,, R, vanish when ® = 0 by hypothesis. The RG map will preserve this property.

In order to carry through the next step of the RG map as described in Sect. 3 we must
also specify V(Agn, ®). We define

Vi(As,, @) = V(As,, @, Coiy 11, 8ns n)

o [ @Rt [ dxedm @)
5 ’ As,

n

where we have used the notation C,,; ;-1 = S.C, . Here and in what follows we adopt
the notations introduced in the Appendix of Sect. 3.3. Thus f denotes fluctuation integration
with respect to the measure dpur, (§) and I denotes fluctuation integration with respect to
the measure dur, , (§), with I, L = §; 1 T',,. We recall (see Sect. 3.1) that when we perform
the fluctuation integration the fluctuation field & enters V through V (A;,, ® +&) but V will
remain independent of &.

We now define Q,: Q, is supported on connected polymers X, such that | X, | <2. We
assume it can be written in the form

3
0 (Xs,, ®) = Q(Xs,, @; o, Wa ) = g7 Y OV (X, ®; Cp w7y (44)
j=1

where w, = (WP, w® wS) is a triple of integral kernels to be obtained inductively and

n >’

Aén X A3n if Xgn = Agn
Xs, =1 (As, 1 X As, ) U(Ag, 20 x Ay, 1) if X, =Ag, 1 UAg, 2 4.5)
0 otherwise

dxdy(®(x) — @) (P(x) — D)W (x —y)

Xs,

Q"N (X;,, @; Cpy w) = —2/

022 (X;,, ®; Cpy w®) = — / dxdy[:(®(x) — P(Y))(P(x) — D(y)(P(x)
Xs,

+ (MNP (x) + D(y)):c, (4.6)

+3:[(@D)(x) — (PDYWT* ¢, Jwi? (x — y)

00V (X;,, @: Cyowl) 24[ dxdy :®(@X)P(x) P ()PP (V) P(y):c, w (x — )
X5y
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Note that in the expression for Q!'V is equal to its C,, Wick ordered form because of (1.31).
Next we define the second order approximation to the RG map. Let p, be the activity
supported on unit blocks defined by

Pn (A(gn, ‘i:a d)) = Vn(A(Sn v‘i: + CD) - Vn(AB,,v (I)) = DPn.g + Pn.u (47)

where

Prg=28 / dx (:(séf:rn () +2 ) [ ®a(0):Ea(EE)ir, (¥) +:(EE)Euir, (X) Pu(¥)]
Asy, «

+2(PP) (x) (EE) (x) + (PE)*(x) + (D) (x)

+2) Eup)r, (0):(Pa®p)()ic,,
a.p 4.8)

@) + (®D)Dy:c

n41,L-1 ntl1,L-1

+2) [Eu(x) : Do (@) :c (x)é,(x)])

Py = Ht / dx ((EB) () + (BB () + € (0))
A5n

In (4.8) we have used a component notation. Thus ®; = ¢, ®, = . Similarly for the fluctu-
ation field &, & = ¢, & = . ¢ is bosonic (degree 0)and 7 fermionic (degree 1). In deriving
(4.8) from (4.7) have used C,, =T, + C,, | ;-1 (see (1.54)), the independence of ®, £ in the
sense that their components are independent and distributed with covariances C, ;| -1, T,
respectively. The unordered objects in (4.8) are equal to their Wick ordered form.

We will effectuate the RG map of Sect. 3 following closely the strategy in [13]. Namely,
we insert a complex parameter A into our previous definitions in such a way that (i) at > = 1
our A dependent objects correspond with the previous definitions. (ii) The expansion through
order A2 is second order perturbation theory in g, counting u, = O (gﬁ). (iii) Powers of A are
determined so as to correspond with leading powers of g, buried inside polymer activities.
(iv) All functions will turn out to be norm analytic in A and this will enable us in Sect. 5 to
profit from Cauchy estimates.

We define

1
P,V =¢" (—kpn_g — AP+ Exz pﬁ,g> + A% (4.9)
where r,, | is defined by the condition P,(A=1)=P, =¢ " — eV, Similarly, we define

K, =220, + 13 (le”" —e 10, + R,) (4.10)

which, for 2 = 1 coincides with K, =e~"" Q, + R,.. Corresponding to (3.10) we define

1 ~
B, K,)(Ys,) = Z N Z o=V (X5,.0)
N+M=1"" "7 (Xg,, ). (Asy, )= 1{Ys, )
N M
[T Kn G X, D] Puhe 2,00 @.11)

j=1 i=1

where X(gmo = Y{;n \ (U X(;nyj) U (U Aén,i)~ Let S()L, Kn) = SLB()\., Kn), where SL is the
rescaling defined in the last section.
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The RG map (see Sect. 3) for K, with parameter A is K, — f,11x(X, K,) =
E(S(A, K,)E, F, (L)), where the superscript 1 denotes integration over the fluctuation field
& = (¢, n) with the measure dur, , and ', is the rescaled covariance S, 1T, as in the
Appendix to Sect. 3. The relevant part F, (1)) is defined on polymers in (8,.:Z)* and will
be written as

F,(L) =A*Fp, + A Fp, 4.12)

and F,(A) = F,, when A = 1.
Perturbative Contribution to f,,

Given a function f(}) let

1
L.f=fO)+ 0+ Ef”(()) (4.13)

be the Taylor expansion to second order evaluated at A = 1. Then the second order approxi-

mation to the RG map is £5} = (£57%, £57) with

n+l,

S (K, Vi) = TES O, K F,(W) = E((TS(, K, Fo,),

4.14
f(SZ) (K V ) (<2) ( )
n+1,V n» - n+1
where

Ve = Vi — Var(Fo,)

Note also that only the linearized &, intervenes, because it will turn out that the nonlinear
part of extraction generates terms only at order A* or higher.

Proposition 4.1 There is a choice of Fy such that the form of Q remains invariant under

the RG evolution at second order. In more detail, fn+1)(V,,, Qe V) = (Vn(ﬁ), Qflizl) V. L)
where the parameters in

Y=
n+l (A5n+1) - V(A6n+1 + Cug1, gn+1 (=2)° Mn+1 (<2))

evolved according to

’ 34e
Stz =L (1 = L°angy), My <y =L7 pn — L¥byg, (4.15)

(=2)

The parameters in Q77| =

Q(Cry1, Wai1, 8nL), where g, 1 = Lf gy, evolved according to

Wl =Vari Wi, 0 =Tz, 0P =(Cur)” — (Cur)?, p=2,3 (4.16)

The constants a,, b, are given by

=4 / dyv® (). by=2 [ dy v, (») @.17)
(8n412)3 8y12)3
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Proof We define a polymer activity Q,,, L supported on connected polymers X, with
[Xs,.,] <2 as follows: if | X5, | =1,5ay X5, =As, 1, then
R 1
Ont(Bsy 6 @) =2 (P Ny, 6, ©))?
If | X5, | =2 then
A 1
0n1(Xs,,,.6 @) =5 > PrLg(Buit 1, & @) purg(Aps1 2.6, @) (418)

Ap1,1:8041,2
AnJrl,lUAnJrLZZ)(&nJr]

where p, 1 o is defined by replacing in (4.7) and (4.8) (g,, tn, Un, Cpy1.0-1) BY (8n.Ls Mn,Ls

Tur, Copr) with g, p = LPgy and , p = L7 .
It is easy to check that

T.8(Kns A) = —pupe” "t + (et 0,y +e 20, 1) (4.19)
where
Qn.L(XS,,H ) g + q)) = Q(XzSnH 75 + ch Cn,Lv Wy L, gn,L)

Using C,,p =T, 1 + C,+1 and remembering that % depends only on ® we get

(e_ . Qn,L)J =e L Q(Xén“ ) qu Cn-Hv Wu.Ls gn,L)

Therefore
T,S(Ky, M) (X, @) =" (Q(Xs,,, . P, Cop1s WL 8n1)

+ 00 (X515 @, Vui1s Cos1s 8n.1)) (4.20)

N

where 0, = Qi’ 1. is given after a straightforward but lengthy computation by

3

Qn (X(S,,H , D, Cn+1 > Vgl gn,L) = g,2l’L Z Q(j‘j) (XanJrl , ; Cth] , Ur(li_lj)) (421)
j=1

where

0"V (X, ®: Copr o) = 2ﬁ dxdy[®(x)P(y) + P () P(X)Ju(x — y)

X‘sn +1

OCI(R,  ®: Copru) = /

dxdy [100B0) + @S Pic, .,
Xs

i (4.22)
+ 4@ OON@MPM)ic,,, Jutx =)

05 (R, ®: Copro ) = 4 f dxdy:(0)® () D) DD()D():c,,ulx — )

X5n+1

Define
FQn = Q(CVI+1 > Vit grt,L) - Q(Ci1+17 Vi+i, gn,L) (423)
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evaluated on Xj, ,, ®.
Then we have from (4.20) and (4.23)

& (TAS()w K,)%, Fn) =TS0, K,)" — FQ,,efv”‘L =t OCri1, Wig1, ) (4.24)

which shows that Q is stable under RG evolution and verifies (4.16). It remains to show
that the chosen perturbative relevant part Fp, given by (4.23) is of the form (3.15) and thus
suitable for extraction.

To compute the difference in (4.23) we will make use of the following localization for-
mulae

D) P(y) + () P(x)
= O(0)D(x) + P(NP(Y) — (P(x) = P)(D(x) — D(y)) (4.25)
(@) P(y) + PN D)) + 4P X)P))(P () D(Y))
= 4[(PD)* (1) + (PP’ ()] — (P(x) = P(Y(P(X) = PP (x) + P(y))
X (B(x) + B(y)) = 3[(PD) (x) — (D) ()] (4.26)

that are immediate to check. We get

Fo,(Xs,,) =28, / dxdy[(@B)(x) + (@) () o ¥ (x = y)

X5n+1

+4g3,L/A dxdy[:(cl><i>)2:cn+l(x)+:(<1>&>)2:C”+1(y)]v<2>(x—y) (4.27)

X‘Sn+l

Note that due to supersymmetry there is no field independent part in Fyp,. We can write
Fo,(Xs,,,) as:

Fo,(Xs)= Y Fo, (X5 0, (4.28)
A5n+] CX‘SnJr]
where

FQn(X<3n+1 s A8n+1) = 4g§LF((22,,) (X3n+1 s A<3n+1) + Zg;%Lan) (X5n+1 s A5n+|) (429)

and
FEP (X500 Do) = /A dx:(@P)" (X)ic,,, for (¢, Xoro A,y (4.30)

‘Sn+l
with

fAS;H—l dyv(”’ )(x =, X5n+1 = A5n+1

(m)
an (x7X8,l+17A5,,+1): ,
fAéH dyv™ (x —=y), Xs,,, =As,,, UA; |, connected

' 431
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andm' =4 —m

V(FQ" ’ AS"‘H) - Z FQM (X‘Sn-H ’ A‘SH—I) = 4g5sL Z F(z)(Xsn-H ’ A‘Szz-H)
X5n+l DA511+I X5n+l DA511+1
+28r, Y Fyl(Xs,,.As) (4.32)
X‘sn+1 DA‘Serr]

where we have used (3.13), (3.14) and (3.15) for the first equahty
In the following we will use the fact that the v,(l (& —y), 1 <j <3 vanish for
|x — y| > 1. This follows from the fact that I';, ; (x — y) appears as a factor in the expres-

sion (4.16) for v(giil (x —y) and I', ; has range 1. Returning to (4.32) we have

Z F(’”)(Xé,,ﬂ’ As,) = / dx:(<l>d_>)m(x):c"+1 |:/ n+1( y)
As As

X5n+lDA‘Sn+l n+1 n+1

Y[ aia- y)}
A #A‘gn-%—l 6"+1

Snt1

U o .
(A‘Sn-H ‘A‘S:H»l ) connected

On the r.h.s. use v,(l'i/l) (x —y) =0 for |x — y| > 1/2 to extend the sum on A(’Sn+l to all the

# As,, - We then get

5+|

Y R (Xa Asy) = / dx:(®B)" (x):c, f dyv™)(x — y)
8

X DA n+1

n+1 n+1

Hence from (4.32) and above we get

dx:(@d_J)z(x):an-l-bng,iL/ dx(®®)(x) (4.33)

Snt1

V(Fg,. A<3n-¢—1) :a"grzl,L/

A’Sn-%—l

where

=4 / dyv®, (), b=2 / dy v®, () 434)
Gur1 23 ! Gur12)? *
O

Remark a, and by are well defined since the v/ .41 have compact support. They are positive
and their properties are discussed in Lemma 5.12 of Sect. 5.

The Exact RG Map f,1, for K, = Q,e™"" + R,

Kn = Kn+1 = fn+1,K()"a Knv Vn)l)»:l = 5(8()\7 K”)U, Fn()\))lkzl (435)

induces an evolution of the remainder R, which is studied by Taylor series around A = 0
with remainder written using the Cauchy formula:

() N

(
an.K(A:l)—Zf“Jf +5— M(A o e ®)
j=0
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(=2)

The terms j =0, 1, 2 are the second order part f,7|"x. In the j = 3 term there are no terms
@)
mixing R, with Q,, P, because of the A* in front of R,.. Therefore it splits J K3!(O) =R+

R, 112 into the third order derivative at R, =0, which we write using the Cauchy formula
as

1 [dx s
Rn+1,| = Rn+1,main = % ’ Fg S()\, Qne n) s FQn ()‘) (436)

and terms linear in R,:
_ i -V
Rus12 = Ryt tinear = (S1Ry)" — Froe o

— Z e—Vu,L(Zd,lH\L_IXS,‘H)Rn,L(L—IXSn_H) (437)

g-1yL _
X5n+1'L X5n+|725n+l

SR, (Zs

n+l)

The remainder term in the Taylor expansion is

1

Rn+l 3= A
T 2mi

d f
7€ mg(s(h K,)", Fu(A)) (4.38)

In Proposition 4.1 the coupling constant in fofl is not the same as the coupling constant

in Vn(ff) . Furthermore, the coupling constant in Vn(-li—]z) will further change because of the

contribution from Fy. To take this into account we introduce

Vi1 (As,,) = V(As, 15 Catts 8ntts Bnt1)
8n+1 = Lsgn(l - Lsangn) + %_n () 4.39)

34e
Mn1 = L%H«n - Lzsbngﬁ + Pn (M,,)

where u, = (g,, Un, R,) and the remainders &, (u,,), p, (u,,) anticipate the effects of a yet-to-
be-specified Fg,. Then we set

Rip1a=e " 1Q(Cpit, Wit 8us1) — € "L Q(Crit, Wat1, 8n.1) (4.40)
and define

Qn+1 = Q(Cil+1 > Wntl, gn+l)
Rn+1 = Rn+1,main + Rn+1,linear + Rn+1,3 + Rn+1,4 (441)

Kui1= Quyre” " + Ry
With these definitions we have obtained the RG map
Jnsrv (Va, Ky) = Vi, Jnst,k (Vs Kn) = Koty (4.42)
Definition of Fg,
To complete the RG step we must specify the relevant part Fg, from the remainder R, . The

goal is to choose Fp, so that the map R, — R, lincar Will be contractive in the following
sense. R, is measured in the norm (2.20), and the kernel norm (2.21), with § = §,, with a
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The Global Renormalization Group Trajectory 957

choice of h and h’ (to be made in Sect. 5). R, is measured in the same norms but on the
lattice scale §,1. We will say that the map is contractive if the size of R, jinear 1S less than
the size of R,,.

Fg, will have the form given in (3.15) with P a supersymmetric polynomial vanishing
at & = 0. The coefficients ap will be identified via normalization conditions on the small
set part of R,y jinear- This means that certain derivatives with respect to & = (¢, ¥) vanish
when ® = 0. That the map in question is contractive when R, 1| jincar 1S Suitably normalized
is proven in Sect. 5.

For given coefficients &, p(X), we define

F, (X5, @)= 3 f dx @, p(X5,) P(P(x), 35, @ (x)) (4.43)
p 7 Xy

I:"Rn (Xs,,®)=0: X, is not a small set (4.44)

P runs over the relevant monomials which in this model are P = &, (d>d_>)2, D9;,, Mci),
agm,ldxi), u € S, with the corresponding coefficients ap(Xs,) = @n2,0(Xs,), 0 4(Xs,),
&, 5.1(Xs,, 1), &, 21(Xs,, 1). The index set S was defined in Sect. 2.1 after (2.1). Note that
P =1 is not a relevant monomial in this model: R, vanishes when & = 0 vanishes by hy-
pothesis. Then R?(Xs,, ®) vanishes when ® = 0 by supersymmetry, (Lemma 1.1) so that
no subtraction is necessary at & = 0.

Choose the coefficients &, p so that

Jy=RE — Fg e (4.45)

is normalized (details are given below). Note that J (X, , 0) = 0. We define the relevant part,
supported on small sets, by

- , ~
Fr,(Zs,,,, @) = E Fr, (L™ Xs5,.,®) = E Fg, (X5, S, ®) (4.46)
X(S”Jrl :small sets XS,; :sza“ sets
“1xE =z 1%L =7
L X‘SIH»I _ZblH»l Sn = %0n

Fpg, is supported on small sets by construction. From the definition of R4 1 jinear in (4.37)
we get

—Vi(Z Lx -1
Ryt 1ginear(Zs, ) = Z e G N X (LK

X‘5n+l :small sets

n+l)

L71X§;1+1:Z(s’1+1
_V -1
LY T N (X, ) (44T

X5

:large sets

n+1
L—1xL =z
Skl O+l

Therefore the first sum in Rjjnear 1S also normalized because normalization as defined below
is preserved under multiplication by smooth functionals of ® and rescaling.
Substitution of (4.43) in (4.46) shows that Fp, is of the form required in (3.15). We have

Fr,(Zs, ., P) = Z/ dx o, p(Zs,,,, x) P(P(x), 05, P(x)) (4.48)
P Y%

n+1
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where

U p(Zs, )= D @p(Xs) LTy () (4.49)
X5n+] small set

—1xL —
S T e

In (4.49) 1y is the characteristic function of the set X. Note that X, , fixes X, by restriction
by our construction of polymers in Sect. 1.3. [ P] is the dimension of the monomial P, (2kd;

for (®P)* and 2d, + 1 for QBSMCB). & p(Zs,,,,x) is supported on small sets Zs,_, and
vanishes if x ¢ Zs, .
We now compute Vg, following (3.13). Define
np = Y p(Zs,,. %) (4.50)

Z‘Sn+1 X

This is independent of x by translation invariance. In fact given an x it belongs uniquely to a
block As, ., , since our blocks which are restrictions of half open continuum cubes are always
disjoint (see Sect. 1.3). The sum over all polymers containing a block A; = is independent
of As, ., by translation invariance.

From (4.49) and (4.50) we get

n+1

oty p = LIP3 > &n,p(Xs,) (4.51)

Xs small set:L~! X’Sn+l Dx

n+1

a, p=0for P = ®o;,_ ® or 95,1 ®d by reflection invariance of polymer activities.
Therefore

VL(Fr,, A5, ) = / dx{o, 20PP + 0ty 40(PDP)?}

= / dx{p,(u,) : @ ¢, +£, ) 1 (@D):c,,, )  (4.52)
Ag

where u, = (g, i, R,) and
Pn =0y 2,0 +2C, 11 ()t 4.0, & =0 (4.53)

which are formulas for the error terms in (4.39).
Normalization Conditions

By an abuse of notation let 1 denote the constant function in C?(X;,) equal to 1. Similarly
let 127 denote the constant function in CZ(X;P ) equal to 1. We will identify the C(X;,)
function f(x) = x, with x,,. Note that x,, is defined with respect to an origin which belongs
to Xs,. Similarly we will identify C*(X3 ) functions g;(x1, X2) = X1, g2(x1,%2) = X2,
with xy ,,, X2, respectively.

Suppose the polymer activity J(Xs,, ) = J(X;,, ¢, ¥) is of degree 0, gauge invariant
and supersymmetric. We have the following identities:

D*°J(Xs,,0,0;1%) = D*?J(X;,,0,0,; 1, 1) (4.54)
D*J(X;,,0,0; x1,,) = D**J (X5,,0,0,;x,, 1) (4.55)
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D**J(X;,,0,0; x2,,) = D*?J (X;,,0,0,31,x,) (4.56)
D*?J(X;,,0,0;1,1,1%) =2D%*J(X;,,0,0; 1,1, 1, 1) (4.57)
D*°J(Xs,,0,0;1%) =0 (4.58)

where the field derivatives are taken according to (2.12). The identities (4.54)—(4.57) follow
by expanding J(X;,, ®) in the fields, retaining a degree 4 supersymmetric polynomial in
® and 95, ¢ which is all that enters into the computation. Then express it in the Grassmann
representation (1.85). (4.58) is trivial. Because J is of degree O the only term that survives
for the computation of (4.58) is of the form fxg‘ dx a(xy, x2, X3, X)W ()W ()W (x3) W (x4)
where the kernel a is antisymmetric in xj, x; and in x,, x4. The integral vanishes if we
replace the Grassmann piece by 14. Derivatives on the Grassmann fields annihilate 14.

We say that a degree 0, gauge invariant, supersymmetric polymer activity J(X;,, ) =
J(Xs,, ¢, ) with J (X5, 0) = 0 is normalized if, for all small sets X, ,

D*°J(X;,,0,0; 1%) = D**J (X5,,0,0,;1,1) =0
D*°J(X5,,0,0; x1 ) = D*°J(Xs,,0,0; x5,) =0
(4.59)
D*?J(Xs,,0,0; 1,x,) = D**J(X;,,0,0;x,,1) =0
2D%*J(Xs,,0,0;1,1,1,1) = D**J(X;,,0,0; 1, 1,1) =0

Determining Coefficients from (4.59)

We will apply the normalization conditions to J = J,, defined in (4.45). This will determine
the dependence of the error terms &,, p, on R,,. Lemma 5.17 will show that these terms are
bounded by the kernel norm of R,,.

In doing the following computations note that J, (X, , 0, 0) = 0 as shown earlier. More-
over the odd derivatives D%/ J,(X;,,0; f*/), j =odd integer, vanish identically by gauge
invariance. It is enough to take derivatives with respect to the bosonic fields ¢ because of
the identities stated above, (4.54) et seq. Taking derivatives of (4.45) and remembering that
Fg,(X5,,0) =0, V,(Xs,,0) =0 we get

D"?J,(Xs,,0,0; f, ) = D"?R:(X;,,0,0; f, f) = D*?Fg,(X;,, 0,0 f, f)
D"*1,(X5,,0,0; fi, fi, fo f) = D**Ri(X5,,0,0; fi, fi, fo, o)
~ o (4.60)
+D0'4FR”(X5”,O, 0; fl, f17 f2a f2)
+4D0’2ﬁRn (Xs,,0,0; f, f)DO’ZVn(X&«’O’ 0; f, f)

where the f are complex valued functions in C 2(Xs,). A variation of ¢ along f implies that
we vary ¢ along f. Note that from (4.43)

D*?Fg,(X5,,0,0; 1, 1) = | X5, |&,20(Xs,)

D Fr, (Xy,.0,0; 1,3,) = |Xs, 1@ » 1 (X5, 1) + & 2.0(Xs,) / dx x,
Xs,
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DO’ZFR,I(XS,” Oa 05 Xus 1) = |X5,, |&n,2,l (Xan M) + &n,Z,O(XS,l) dx Xu
Xon

D% Fg, (X5,,0,0; 1, 1,1, 1) = 4|X5,|@,4(X5,)

Now imposing successively the conditions (4.49) we get

» 1
@n20(X5,) = WDO’ZRg(Xa,,, 0,0;1,1)
an

- 1 1 .
Q0 i(Xs,, 1) = mDO’zR,e(x%, 0,0; 1,x,) — lX—az,o(Xan) /X dx x,
n Sn

8

1
D*?RE(X5,.0,0;, %, 1) — ——@n20(Xs,) [ dxx, (460

&n,2,l(X8,,sM) = X, |
n X(S”

1Xs, |

1 1
& (X3) = 33 (DO4RE(X;,,0,0:1,1,1, 1)
6”

+ D2V, (X,,,0,0; 1, ) DO2RE(X;,, 0,0 1, 1))

‘We remind the reader that RG transformations preserve the invariance of polymer activities
under translations, reflections, and rotations which leave the lattice invariant.

5 Estimates

Let u, = (gu, n, Ry). Then (w,, u,) are the coordinates of the measure density in the poly-
mer representation after n successive applications of the RG map f;, 1 < j <n, of Sect. 4.
The w,, evolve according to W,,+1 = fu+1,w(W,) = Vu41 + W, 1 as given in (4.16). This evo-
lution is independent of u,, and is solved in Lemma 5.9 below. The sequence {w,, u,} with
Upt1 = fnr1(uy,), where the solution for w,, is incorporated in the map f,,, is the RG trajec-
tory. The index n in R, also indicates that R, is supported on polymers in (8,7Z)>. Corre-
spondingly the norms for Banach spaces of polymer activities given in Sect. 2 are indexed
by the lattice spacing §,,. In this section we first set up a uniformly bounded domain D, for
u,. The rest of this section is then devoted to the proof of Theorem 5.1 below. This theorem
controls the remainders (€,, p,) in the flow equations (4.39) together with R, in (4.41)
when u,, belongs D,. It also gives bounds on g, and w,;. Theorem 5.1 will provide es-
sential ingredients for the proof (in Sect. 6) of existence of an initial choice of the mass
parameter such that there is a uniformly bounded RG trajectory at all scales labelled by n.

The aforementioned domain will be a ball defined with Banach space norms with the cen-
ter of the ball fixed i.e. independent of n. To this end we first obtain an approximate discrete
flow of the coupling constant g, from the first equation in (4.39) by ignoring the remainder
&,(gn, Un, R,). The approximate flow equation has n-dependent coefficients. However we
show below (Lemma 5.12), with no assumption about the domain D,, given below, that the
positive coefficients a, converge geometrically as n — oo to a constant a, , > 0. This leads
us to set up a reference approximate discrete flow of the coupling constant

8ent+1 = ngc.n(l - Lsac,*gc,n) (51)
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This may be thought of as an approximate flow in an underlying continuum theory. This
approximate flow has a nontrivial fixed point, namely

o Le—1
g=15—>0 (5.2)

The constant a. . = a. (L, €) depends on L, ¢ in such a way that when ¢ — 0 with L fixed
ac«(L,e) — ac (L) which depends only on L. We will assume L large but fixed for the
rest of the paper. We then choose ¢ sufficiently small depending on L.

We have

0<g<Cre (5.3

where C| is a constant which depends only on L. ¢ is then a measure of smallness of g.

In the following O (1) denotes a constant independent of L, ¢ and n. Constants C are
independent of ¢ and n but may depend on L. These constants may change from line to line.
It will not be necessary to keep track of these changes.

The Domain D, We will say that u,, = (g,, s, R,) belongs to the domain D,, if

lgn — &l <vg,  |ual <8 (5.4)
RN, < g4 (5.5)

where the constant v is held in the range 0 < v < 1, and

IRy llln = max{|Ryln, 4.5,> & IR lInGpc.28,) (5.6)

We choose « = k(L) as in Lemma 2.1 and p = p(L) as in Lemma 5.3 (independent of
the domain hypothesis). «, p will be held fixed after L has been chosen sufficiently large.
8,1 = O(1) > 0 are very small fixed numbers, say 1/64, and hp = cg~"/* withc = O(1) >
0 a very small number. Furthermore we take g, = p~ /> 4+ k~!/% and choose ny =9. hp =
hr(L) is an ¢ independent constant which depends on L and is taken to be sufficiently large.
(The dependence of & on L enters in the proofs of Lemmas 5.15 and 5.16 below.) We recall
thath = (hp, hr), hy = (hpy, hE).

Remark

1. Note that condition (5.5) is equivalent to having both

I RyllnGe.a, < 874" (5.7
|Ruln,. a5, <84 (5.8)
2. In [13], see (5.1)—(5.3) therein, the domain was specified using . In contrast here we

specify the domain as in [1] by using g instead of ¢ and moreover we enlarge the domain
of g, slightly for technical reasons.

Recall the definitions of p, (g, in, Ry) and &,(gy, tn, R,) from (4.53). We will prove in
this section
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Theorem 5.1 Let u,, = (g, in, Ry) € D,,. Let L be large but fixed followed by ¢ sufficiently
small depending on L. g is thus sufficiently small. Let u,.1 = f,+1(u,) where f,. is the
RG map of Sect. 4. Then there exist constants Cy independent of n and € such that

&, < CLg" 4 (5.9)

loal < CLg"* (5.10)

Ryt lllngy < L7H4gH/A (5.11)
80s1 — &l <2082 | < O(HLF g (5.12)

Remark The lemmas which follow will serve to prove Theorem 5.1. They are organized as
in Sect. 5 of [13]. We remark that Lemmas 5.1-5.4, 5.9, and Lemma 5.12 are independent
of the domain hypothesis. All the other lemmas are under the assumption that (g,, (., R,)
belong to the domain D,. Lemmas 5.21, 5.22, 5.23 and 5.26 are the major parts of the pro-
gram. R, 1| main is bounded in Lemma 5.21 and this result determines the qualitative form of
the bound on the remainder. R,;; 3 and R, 4 are seen, in Lemmas 5.22, 5.23 to be negli-
gible in comparison. R,,;| jinear 1S the crux of the program and it is bounded in Lemma 5.26.
The remaining lemmas are auxiliary results on the way to these lemmas. These auxiliary
lemmas implement some of the following principles: Wick constants C, (0) are uniformly
bounded by constants C = C;. In bounds by G,,h, A norms, a fluctuation field ¢ con-
tributes a constant C = O (1)(p(L)k (L))~'/? and a field ¢ contributes a constant O (1)g~'/4.
The contributions of these fields as well as of the Grassmann fields v,  are controlled by
the structure of the norms defined in Sect. 2 (with above choice of h, h,) and later in this
section ((5.20) et seq). Integration over the Grassman fluctuation fields 7 is controlled by the
Gramm inequality. In bounds by the h,., A norms, fluctuation fields ¢ contribute a constant
C =0()(p(L)x(L))~"/? and fields ¢ contribute O(1). i, has been adjusted to take care
of the constant C above in the contribution of the fluctuation field.

Lattice Taylor Expansions

In the following we will have occasion to estimate the difference of lattice fields at two
different points of a hypercubic lattice (8,Z)¢. Let f be a lattice function and x, y be two
points in the lattice. We write y —x = Z‘;Zl Snejhjej where hj € Z,, &; =sign(y; —x;) and
the e; are the unit vectors of the lattice. We will express the difference f(y) — f(x) as a sum
of forward and backward lattice derivatives of f along segments of a specified lattice path.
As usual a forward derivative in the direction ¢; is denoted 9;, ., and the backward derivative
is denoted 95, ;. Given j € {1,2,...,d}, s € Z; we define p;(x —y,s) € (8.7Z)¢ by

j—1
pj(y—x,s):Z(y—x,ei)e,» +8u€jse; (5.13)

i=1
with the convention that if j = 1 the sum is empty. Then it is a simple matter to verify that
d hj—-1
FO)V=F@) =8, )Y Os,c06,f (x + pj(y = x.57) (5.14)

j=115;=0
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By iterating (5.14) we get the second order lattice Taylor expansion

d
FOY= )= (v = %), )85, f ()

j=1
d hj=lh—1

FEH DN Y Uhese e S+ pe(pj(y = x5, 80)  (5.15)

Jik=1s5;=0 5=0

Lemma 5.1 Let Z;,, X5, be connected 1-polymers in (8,Z)3. Let Y;, =0 or Y;, =
L‘IX,;n C Zs, such that vol(Zs, \ Y5,) > % Choose any y = O(1) > 0 and k =k (L) >0
as in Lemma 2.1. Let § be sufficiently small so that 0 < g <«>. Let ¢ : Z{S) — C where Z;:)
is Zs, with 5-collar attached (see (1.80), (1.81)). Then there exists an O(1) constant which
depends on j such that

. P o (v 4

”(p||JCZ(Z§n) < 0(1)2|Z\g—£673fz‘5n\yan dyle(y) Ge(Zs, . 9) (5.16)
For Y5, = W the above bound holds without the factor 27!,
Proof This is the lattice analogue of Lemma 5.1 in [13]. The proof reposes on the Holder

inequality and the lattice Sobolev inequality (see [8], Appendix B for an elementary proof).
Let x € Z;,. Write

1
= — dy(@(y) + 9(x) — p(3))
@ VOI(ZS,,\YB,,) T, ylely (2 oy
and bound
()] < —— dylo(y)| + —— dylo() — o(y)|
PN =S5 < yiely s o < yigx) —oly
vol(Z;,\Ys,) Zs,\Ys,, vol(Z;,\Ys,) Zs, \Ys,

We bound the first term on the right hand side by O(1)[l¢|l14(z;,\v;, - To bound the second
term we write the difference ¢(y) —¢(x) as a sum of lattice derivatives along the segments of
the path as in (5.14). Any connected polymer Z;, as defined in Sect. 1.3 can be represented
as Zs, = Z N (8,Z)* where Z is a connected continuum polymer. If Z;, is a block (unit
cube) then the path p;(y — x,s;) in (5.14) lies entirely in Z;,. If Z;, is not a block then
it decomposes as a connected union of blocks. If x, y are not in the same block then it
suffices to consider the case when they are in adjacent components. We pick a point z( in
the intersection of the closures, write f(x) — f(y) = (f(x) — f(z0)) + (f(z0) — f(¥)) and
use the above first order taylor expansion for each summand. The estimates below remain
valid. Therefore it is sufficient to consider the case Z;, is a block. From

3 hj—1
PO = () =8, Y Y Oy,eje;0(x + pi(y — x.5))) (5.17)
j=115;=0
we get the bound

3
00) =901 = D7 8ulhs1 SUP 1, ¢, < 38, (max ) max sup [, e, 02|

=1 Z€Zs, 2€Zs,
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= Oy = x| llellz,,.1.5 (5.18)

where in the last step we have used the lattice Sobolev embedding theorem. We have |y —
x| < |Z|. Putting the above bounds together we get

lpC)| = OIZI @l L4czs,\vs,) T 1€ Z5,.1.5)

We also have for k = 1, 2, |9} '”Mktp(x)| < ll¢lizs,.1.5 by Sobolev embedding. Therefore

Sl se
combining with the previous inequality we get

lellic2(z,,) = OIZIUN@N L4z, \15,) + €11 Z5,.1.5)

Hence

1012z, , < ODIZI Ul g, vy, + 1017, 15)

S C(.]) 2‘Z|g7j/4€7/g'[z'sﬂ \Ys,, dy ¢4(}’) GK (Z(Sﬂ 5 ‘P)

where C(j) is an O(1) constant that depends on j. We have used the hypothesis that g
is sufficiently small so that 0 < g < «2. This proves the bound (5.16). We now prove the
statement following (5.16). Let Y5, = @. For x € Z;, pick the unit block A;, C Zs,, As, > x.
We have

lp(x)| S/ dylf(y)|+/ dy lp(x) — ¢(y)]
3

n A Sn

Proceeding as before the first term is bounded by the L*(A;,) norm which is less than the
L4(Zgn) norm. The second term is bounded as before except that since x, y € A, we have
|x — y| < O(1). The rest is as before. O

In effecting the fluctuation map in Sect. 3.1 we created polymer activities which de-
pended separately on ¢ and the fluctuation field £. The following lemmas will enable us to
estimate the contributions of the bosonic fluctuation field ¢ at various steps. Define a large
field regulator for the bosonic fluctuation field ¢ : X gn —-C

2

izl
w6 (X, 0 pae >0 (5.19)

Gx,p(XtSna ;) =e€

Kk is chosen as in Lemma 2.1 and is held sufficiently small. The choice of p > 0 is dictated
by Lemma 5.3 below.

Lemma 5.2 For any x € X,
£ < CpjGrp(Xs,, 0) (5.20)

where C, j = (p~2 4+ =127 0(1) and O(1) depends on j. We have isolated out the p, k
dependence in the bound.

Proof The proof follows the lines of the proof of Lemma 5.1 for the case Y5, = #J. Take
the unit block As, C Xs, such that As, > x. We replace the L* norm by the L? norm in
the appropriate place and estimate [£(x) — ¢(y)| with x, y € A;, as before now using the
regulator G, ,. O
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The parameter p > 0 is chosen such that the following Lemma 5.3 holds. p depends
onL.

Lemma 5.3 Let k > 0 be chosen as in Lemma 2.1. Then there exists py = po(L) > 0 inde-
pendent of n such that for all p, 0 < p < pgy

/dﬂrn ()G p(X5,,¢) < 2%l (5.21)

Lemma 5.3 is proved in the same way as Lemma 2.1.
We introduce a new intermediate large field regulator which combines the ones intro-
duced earlier

G p(Xs,. ¢, 9) = G (Xs,, ¢ +9)G (X5, 9) G p (X5, £) (5.22)

Lemma 5.4 Let k, p be chosen as in Lemma 2.1 and Lemma 5.3 respectively. Then we have
/dlul",,(;)ék,p(xﬁ,” ¢, 9) <2%01G3(Xs,, 9) (5.23)

Proof The proof follows from an application of the Holder inequality and Lemmas 2.1, 5.3. [J

Intermediate Norms We will set up some additional norms to help us control intermediate
steps where we encounter polymer activities which are functions of the four separate fields
0,0, . These norms supplement the basic norms defined in Sect. 2, (2.12)—(2.19).

Let Q(X(; ) be the Grassmann algebra with (bosonic) coefficients in F(Xs,) generated
by ¥ (x), ¥ (x), n(x), 7(x) for all x € Xs,. We assign to 1, 77 the same degrees as for i, V.
This is a graded algebra and QO(X s,) denotes the subalgebra of degree 0 elements. Note that
Q°(X;,) € Q°(X;,). Consider any polymer activity K (Xs,, ¢, ¢, ¥, 1) € Q0(Xs,). Let I C
{1,2,...,pYand J C{1,2,..., p}. Define I ={1,2, ..., p}\ I. We introduce the abbrevi-
ated notation X; := (x;,, ..., x; 1) where fori; € I for j =1, |I| We will refer to the Xi;
as the members of x;. Define ¥ (x;) := ¥ (x;,), . W(x,‘”) and
We now define

1—[|1\ 1
31#(’(1) Jj=0 dw(xm Nk

3 3 3 3
AN (yse) In(xXse) v (y,) Y (x;)

XK (Xs,, 0,8, %.1) (5.24)
Y=n=0

sz ”K(X(;”,(p $oXp,Xpe, ¥y, ¥e) =

Note that the left hand side is antisymmetric Eespectively in the members of X;, X;¢,y,, Y.
Let x := (X7, X;c) and y := (y,, ysc). Then K(X;,, ¢, ¢, ¥, n) can be represented uniquely
as

1 2p,1J
K(Xs,, 9.8, 9, ) = Z Z W/ dxdy Dy

>0 Ic{l,...,
p= Jcil, ..., p)

X Ie(X(Sn’ @, é" X7, X¢, Y7, y.l")
X Y XDV (Y X)) (5.25)
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Let gy : (f(;f))‘” X (f(;f))”' — C such that g;;(x;,y,) is antisymmetric respectively
in the members of x; and those of y;. Let Aeye : (f(;i))”c' X (f(;i))”c' — C such that
hyeje(Xge,y e) is antisymmetric respectively in the members of x;c and those of y, .. The
tensor product g7, ® e se maps (X§)!1x (X x (X x (X = (X )P — C.
By definition (g;; ® hyeye)(Xy, Xze, Y7, Yse) = 817 (X1, Y e ye(Xge, ¥ e) . We consider the
space of functions g;; endowed with the C*((X5,)""! x (X;,)"!) norm. Similarly we con-
sider the space of functions /¢ ;c endowed with the C?((X5,)"‘! x (X;,)/’!) norm. Define

DM (X, 0,8,0,0; £, g1y ® hye ge)

=/ dxdy D D" K (Xs,, 0,8, X1, Xpe, Y7, ¥se5 fX™)
X

dn

X (81 ® hyeye) Xy, Xpe, ¥, ¥ie) (5.26)

where the derivative DY} of the bosonic coefficient is with respect to the field ¢ (and not
the fluctuation field ¢). This defines a multilinear functional on the normed subspace of
antisymmetric functions in C2((Xs,)!"! x (X)) x C2((X5)1 x (X5,)!)).

The norm of the multilinear functional (5.26) is defined analogously to (2.16), namely

I D*1 7" K (X5, ¢,¢,0,0)]

/ dxdyDyp DY K (Xs,, 0, C.%1, X6, ¥, Y50 ™)
X

= sup
1jleax,, y <1 VI<ism 5
”g””cz(x”‘x(w\)
lihye je HCZ(X(‘;;‘ (Xgiq)
X (817 @ hyeye)(Xp, Xpe, ¥y, ¥ye) (5.27)
In the beginning of this section we specified h = (hp, hg) and h, = (hp, hp,).
We define the norms
oo Mg h2p
K(X; 0,0)ln = L L
1K (X5, 9,8, 0,0)lln = ZZ Z U TN
p=0m=0 Ic{l.....
Jcil,..., p)
x | D71 K (X5, 9.¢,0,0)] (5.28)
1K Xs)lng,, = sup IK(Xs,0.,0,00uG, ) (Xs,,0,8)  (5.29)
' PLEF L)
8
~ oo mo h2p
K(X;,0,2,0,0 B F
1K (X5,.0.2,0,0)[ln, =Dy Z m, TG
p= =0 m=0 [C(l .....
x ||sz’-”-'"15(xa,l, 0.£,0,0)]| (5.30)
IK (X5, 6., = sup I1K(Xs,,0,£,0,0ln, Gy} (Xs,,©) (5.31)
' 56}'5(;5)
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oo mg

: i
KX =22, 2, CmU I

[7:0 m=0 Ic{l,..., P
Jcl{l,....p}

x | D> K (X5,,0,0,0,0)]| (5.32)

It is straightforward to prove that the above h and h, norms satisfy the multiplicative prop-
erty of Proposition 2.1. _
Special case: Consider the map QX 5,) — QO(X,;n) given by

K(Xs,, 0,5, 0, 0) = K(X5,, 0 + ¢, ¥ +1) (5.33)

Norms for K were defined earlier in Sect. 2, see (2.12)—(2.18). On the other hand the h and
h, norms of K are defined in (5.28), (5.30) above. We have

Lemma 5.4A Define h:= (hTF, hg) and fl* = (hTF, hpy). Then we have for the polymer
activity defined in (5.33)

IK (Xs,.9.2.0,0)l; < K (Xs,, 0+ ¢.0)ln (5.34)
1K (Xs,,0,2,0,0)l; < 1K (Xs,.Z,0)]n, (5.35)
Proof Let I C {1,...,p} and J C {l1,..., p}. From the definitions (5.24) and (1.86) we
have upto a sign factor
Dy DY K (X5, 0.8, X10, X1, Y1, Yaes )
= (=)' Dy D K (Xs,, 0+ &, %1, X1e, ¥, Yges £ (5.36)

Let (g5 ® hyeye)(X;,X;e, ¥,y c) be a test function as defined after (5.25). It is antisym-
metric respectively in the members of X;, X;c, ¥, y,c. From (5.26) and (5.36) we get

DMK (X5, 0,8,0,0; X", g2 1)

:(_l)u/h} dxdy DgD;”K(X,;n,go—i—{,x,,x,o,yj,yjc;fx'”)

Sn
X (81 ® hyeye)(Xp, Xpe, ¥y, yse) (5.37)
Let (x7,Xrc) = (x1,...,xp) and (y7,¥5¢) = (¥1,...,¥p). Write (gr7 ® hyeje)(Xr, Xye,

Yi, Vi) = (815 ® hyeye)(Xi,...,Xp, ¥1,...,¥p). Let S, be the permutation group of
{1, ..., p}. Define

A(gr7 @ hpeye)(X1y vy Xpy Yisnevs Vp)
1

~ () D @1 @R s ) Foty - Xo(: Yoty -2 Vo)

0,0'€S)p

Now the coefficient function D D;”K(X,;n, ©+ &, X7,Xpe, ¥y, ¥e; ) is antisymmetric
in (X;,Xpe) = (X1,...,xp) and in (y;, ys¢) = (y1, ..., yp). Therefore we can replace g;; ®
h[(‘]c‘ in (537) by .A(g[j ® ]’L[c‘,c) and hence

sz'lj'mk(xﬁn » @ ;» 0’ 0’ fxm’ gZp,[])
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< ID™"K (X5, 0 + & O T T UL A ez, 1A C81s ® hreso)ll s an,
J:l n

Now [ A(g1; ® hICJ‘)ch(X;:) = ”gIJ||C2((X5”)\1I><(X5")|J\) A se ge ||c2((x5n)Il"\x(x,;n)\l"\)- Using
this in the previous inequality gives

ID*P! " K (X5, 9.2, 0.0) < ID*P" K (X, +¢.0] (5-38)
Therefore
oo mo " 2ph217
K(X s 0,0 < T T Tet i T Ten
1K (X5, 0,6,0.005 =330 > mU T T
p=0m=0 Ic{l,...,
Jc{l,..., p)
x||D*"K (X5, @, ¢, 0| (539)
Now

o= Nl (ph
Jcdl,..., p)

Substituting this in the previous inequality and using the definition (2.17) gives
1K (X5, 9,¢,0,0)ll5 < 1K (X5, 9+, 0)lln

which proves (5.34). The proof of (5.35) is the same. a

Lemma 5.5 Let g,, u, belong to D,. Let Ys5, be a 1-polymer. Then for V,(Ys,, ®,§) =
V(YB,,a P + Sa C)n 8n>» :un) or V(Yg'l, d>, SLCn+17 8n>» :u'n)a we have

e~V Won -0 < 2\Y5n|e*%fy5n dxlp+cI*(x) (5.40)
lle™VnWn ®E < 2ol (5.41)

for & > 0 sufficiently small depending on L. In the above norms h = (hg, hr) and h, =
(h gy, hF) are chosen as in the hypothesis for the domain Ds,. Thus hgp = hp(L), hg =cg™4
with ¢ = O (1) sufficiently small, and hp, = p~ 12 4+ k712, Note that hp. depends on L via

pand k.

Proof It is sufficient to prove this when Y;, is a 1-block Aj, . Because otherwise we can
write Y, as a disjoint union of 1-blocks and write the left hand side as a product over 1-
block contributions. Then the multiplicative property of the h norm (Proposition 2.1) gives
the lemma.

From the definition of V in (4.1) we get on undoing the Wick ordering (see (1.32)),

Va(As, ) = Vou (B, 0) + 280 f

A‘Sn

dxpF YT () + fin f dxyi)  (542)

Asy

where

Vin(As,, 9) :/ dx[gn(9P(x)* + Lup@(x)] (5.43)
8,

n
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and ,an =MWUn — 2gncn (0)
By the multiplicative property of the h norm,

_ _ —2¢n dxp@p Y —fin dxyry
le V(A5'1’¢)I|h§||e \/L,_,Z(A,;n,<p)||hB||e 8 ann v<ﬂ(ﬂ(X)1//l//(X)”h”e iz fAén xx//lll(x)”hf (5.44)

We estimate each of the factors on the right hand side in turn. We observe that by taking
¢ sufficiently small we can make g as small as necessary since 0 < g < Ce. Since g,, i,
belong to D, and 0 < v < 1, we have £ < g, < 32 and u = O(§>~*). Moreover from (5a)
of Theorem 1.1 and (1.56) we have the uniform bound |C,,(0)| < C;.. Therefore |fi,| < C.g
with a new constant C; .

For the first factor on the right hand side of (5.44) we have the bound
||e_‘/t¢,ﬂ(A5n"P) ”hB < Z%M(sn \e_% ann dx(p@)? (x) (545)

where |A;, | = 1. This can be proved on the lines of the proof of Lemma 5.5 of [13] by
substituting there g for ¢ and taking account of the previous observations. Thus

Vi (As, . @) — % /

g
dx|g|* > Z/ dx(lg|* — Crlpl*)
Ap An
Now Crlgl* < 1(l@|* + C.?). Let g be sufficiently small so that §Cp* < 7. Using these
two observations we get from the previous inequality

e~ Vun(Bs,.9) <1+ O(g%))e*%"fml dxlgl*

k
My

, Z|ID*e~ Ve || goes through as

The rest of the proof which consists of estimating, for £ > 1
in the proof of Lemma 5.5 of [13] on replacing ¢ by g.

Now consider the second factor in the right hand side of (5.44). From the multiplicative
property of the h norm applied to the series expansion of the exponential we get

—2gn ann Ay (o, - gzé'"hZFfA dxlle@(0) g

lle

lIn

Now g, < 3z and g7 = O(1)h3>. Let 1 = ¥®) Then

hp

2 - h%’ 2 h%? 4
280h N9 @Iy < O3 (@ 141D < O (@ +1)
B B

which can be proved by two applications of Holder’s inequality. and therefore for the second
factor we have the bound

280 [ a5, AXPPEVT () < 20(])(hp/h3)2\A5”|€0(1)(hF/hB)2g’fA8n‘dx(‘/"/_’(x))z (5.46)

lle

lIn
Finally for the third factor we have straightforwardly the bound

”eﬁn Ias, d’”’““’”nhF < QhFCLEIA, | (5.47)
where we have used the bound |/, | < C. g (see above).

Put together the bounds for the three factors. In the bound (5.45) use g, > %. Let g be
sufficiently small (thus making 4 p sufficiently large) so that max(O (1), Cp)(hr/h 5)? < %
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where O (1) is the constant in (5.46) and C; is the constant encountered above. This ensures
that in the bound (5.46) the exponent O()(hp/hp)? < 1 . It also ensures that in the bound
(5.47) the exponent h3.Cr g < - ¢+ Thus we have obtalned for g sufficiently small

fle=Y Bon®) ||, < 21881 g=8/8 [ dx(09)*(x)

and the first part of the lemma now follows on invoking the argument in the beginning of
the proof. The proof of the second part follows the same lines. |

Lemma 5.6 Let p, ,(As,, &, ) and p, . (Ag,, &, P) be as given in (4.8). Let g,, |1, belong
to D,. Let hy = cg~'"* and h g, be as in the definition of D,,. Recall thath = (hy, hy), and
h, = (hpy, hp), where hp = hp(L). Let k = k(L) > 0 and p = p(L) > 0, be as specified
in Lemmas 2.1 and 5.3. Then for any y = O(1) >0, 0 <s < 1 we have constants C
independent of n and & but depending on L such that

I Pag(Ds,s 9, 8,0,0)[ln < Crg"* (1 —5)/*G, p(As,, £)

% G ( A(;n,(p)eé“’”" Jag, % @@*00) (5.48)
I (Dsy, 0.2.0,0)[In < CLg"* (1 —5)7 G p(As,.0)

% G ( A(;n,w)eé("”” Jag, % @@*00) (5.49)
g (As,.0.2.0,0)In, < Cp 8Grp(As,. ) (5.50)
1 Pnu(As,.0,2,0,0)[ln, < CLg* G p(As,. 0) (5.51)

Proof pu(As,, &, @) is given in (4.7). We undo the Wick ordering which produces con-
stants C,,(0) uniformly bounded by constant C; from Corollary 1.1. We can then write it in
the form (5.25) by expanding out in the Grassmann fields. Since it is a local polynomial of
degree four we get,

DPng (D5, 0, 8,9, 1)

—ZZ Z / dxpya (8, 0, 60 [ [V 0 [ [ 10 (0)  (5.52)

p=0 a Ic{l,. iel iel¢

where 0 means that /; = 0 Vi. We have following the definition of the norm in (5.28) with h
replaced by h

”pn,g(A(Sn , @, é‘» 0’ 0) ”h
2

<S8 sup Z f A (Asy, 9.2,y 1829 ()
1c{1

p=0 HgZp =1 a

<Zh2pz > / dxl| 5y, (B, 0.8, g (5.53)

a Ic(l,..2n) VDo
|1] even

. 2 ~
where g5, (X) = g2, (x, x, ..., x) and || g2, | is the C*(A;”) norm of g, ,,. pgjzép(A,;n, ©,,X)
is a polynomial in ¢, ¢ and every term in the /3 norm of p, . », can be estimated as in the
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proof of Lemma 5.6 of [13]. Each term carries a factor g, = O(g). The fluctuation fields
¢ are estimated via Lemma 5.2 and the fields ¢ via Lemma 5.1. For each field ¢ we lose

g’%. In the p = 0 term the maximum power of ¢ in p, 4 , is 3, for p =1 the maximum
power is 2, and for p =2 it is 0. The bound (5.48) now follows as in Lemma 5.6, [13]. The
bound (5.49) for p, . (As,, &, @) is proved in the same way. We just have to remember that
iy = O(g*%) from the domain hypothesis, and that the maximum power of the field ¢ in
the p, ,,p is 1. The remaining parts are proved in the same way. O

Define pn(s) = pn(ss A(S”v D, E) by pn(s) = SPn,g + SZPn,u- Then 'na = rn,l(A(Sns D, E)
defined by (4.9) is given by

1 ! v / /
Fag = 5/ ds(1—5)%e O~V (= p (5)’ + 6, () Pup) (5.54)
0

with p),(s) = 4 p,(s) = pyg + 25pu, and pll(s) =2p, ..

Lemma 5.7 Under the conditions of the domain D, there exists a constant C independent
of n and € but dependent on L such that

11 (s ) y6,, < CLe™ (5.55)

171 (Bs)ly, 6., < C8™ (5.56)

Proof Follow the proof of the corresponding Lemma 5.7 of [13]. Write V, + p,(s) =
Vi 1(s) + V, 2(s) where

V,1() =V (As,, ®+E&,Cp, 580, 52 0),
Vu2(s) = V(As,, @, 8.Cp, (1 —5)gu, (1 — 55 1t,)

‘We have

70.1(As,, 9,2, 0,0)|In
1! , V. (s /
55/ ds(1 —s5)*le” 19yl "’Z(A)Hh(”l’/(s)”iz+6||P(S)“h”pu”h)
0

&ns Uy belong to D,. Lemmas 5.5 and 5.6 continue to hold with g,, u, replaced by
58ns 7y of (1 =)y, (1 —s*)p,. We bound [le 1@y < 2 and [le”"n2@|, <

—(1=)% [y dxlp*() .. . _3 A
2e dn . We bound the remaining factor (using Lemma 5.6) by C. g4 G, ((A;,,

=983y [, dxle*(x) 1 .
0, 0)e on . We put the three bounds together and choose 0 < y < 3. This

gives the bound (5.55). The proof of (5.56) is similar. O

Lemma 5.8 Under the conditions for the domain Ds, there exists a constant Cy, indepen-
dent of n and ¢ but dependent on L such that

1P, w6, , a5, < Crlng*| forag' <1 (5.57)
1P, G, a5, < Crlrg' ™2 for 2g' 2 <1 (5.58)
Proof This follows on applying Lemmas 5.5, 5.6 and 5.7 to P, (1) defined in (4.9). O
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Estimates for Q,e~""

We now turn to the estimate of Q,e~". From (4.4)
3
0 (X5, ®) = O(Xs,, ®; Cpo Wa, ) = g2 QU (X, ®:Cow™™)  (5.59)
j=1
where the Q™ are given in (4.6). Under an iteration, see Proposition 4.1, we have

wr(lp) N w([’) _ U(I’) +wr1;,L

n+1 = Yn+l1
where p =1, 2, 3 and the v are given in Proposition 4.1. Starting with w(()‘” ) =0we get by
iterating
n—1
(p) _ (P
w =" u” (5.60)
=0

For every integer n > 0 we consider the Banach spaces W, 5, of functions f : 6,Z)} — R
with norms || - ||, ., p=1,2,3:

6p+1
1= sup (1480 1/ (0l (5.61)

x€(8,72)3

We define the Banach space W, = W;, x W,,, x Ws, consisting of vectors f =
(fO, f®, £Oy, @ (8,7)* — R with the norm

£l = max £ (5.62)

Letw, = (w{", w?®, w®) as above.

Lemma 5.9

1. For L sufficiently large and & > 0 sufficiently small there exists a constant k independent
of n and € such that for alln > 1,

Walln <ki/2 (5.63)
If we start the sequence {W, },=o with Wo # 0, with |w, s, < k. /2, then
IWalln <kr, Vn=0 (5.64)

2. There exists a function W, defined on | J,-,(8,Z)* C Q? such that for every integer 1 >0
held fixed, the sequence {w,},<, converges to W, in the norm || - ||; as n — 0o. The
convergence rate is given by

lw, —w. |, <c L™ (5.65)

where q > 0 is the constant in Theorem 1.1 and Corollary 1.1. We have W, = V., + W, .
in W for every | > 0.
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Proof

1. Let m=n — j with 0 < j <n — 1. By definition v\” = C,ZL Ch.
multiplication. Since C,, ;, = I'),.1 + Cp41, it follows that vm ) has Iy, as factor. From

the finite range property of I', ;. it follows that

| with pointwise

VP (x)=0: |x|>1

Theorem 1.1, part (5a), and Corollary 1.1 give uniform bounds on the I';,, and C,,. There-
fore there exists a constant ¢, , independent of n such that

oS oo (@5 20%) < €L
2. By definition

»
llv,”

O lpa=sup (L2 (1xl+8) " [0, (L))

"CE(fSnZ)3

] d, 6p+1
= L2 sup (vl 48,07 o 0)))
ye©u—;Z)

Because of the finite range property of vn j of paragraph 1, we can bound |y| <1 in
the weight factor on the right. Because n — j > 1 we can bound in the weight factor
8y—j <8 = L~'. Therefore on using the bound on v of paragraph 1 we get

(p) o2 —2d, _
” np/Lj”[,nSL ]( 2)(1+L l) ch
We bound the first geometric factor by taking p =1 and ¢ > 0 very small in d; =
(3 — &) /4. This gives L™//> This gives the bound

) i ”p,n E Lij/s CL,p

”vnfj.L!

with a new constant c; , independent of n. Using the above bound we get from (5.60)
the bound

9]

—7 5
1wy < cr.p » L7 <2¢1,
j=0

for L sufficiently large. Therefore setting k;, =4 max, c; , we get
”wn ”n =< kL/2

which proves (5.63). Equation (5.64) is a trivial consequence of the above. This proves
the first part of the lemma.

3. Letv? =C %L — CL., with pointwise multiplication, where C., is the smooth continuum
covariance in }R3 of Corollary 1.1. By factoring out "¢, Theorem 1.1 and Corollary 1.1
we have that vL* exists in L°°(]R3) and has finite range: vc (x) =0:|x| > 1. Moreover
by Theorem 1.1 and Corollary 1.1 we have, see the proof of Lemma 5.12 for the detailed
argument,

(r) _ —q(m—1)
lv,”” — L™

O Nl oo (5203 < CLp
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Define

n—1

(» — (»)
W, = Z vc*,L/

j=0
Fix any integer [ > 0. Then for n > [ the (p, /) norm is dominated by the (p, n) norm.

Then proceeding as in the first part and using the previous inequality we get

n—1

4 P
lwl = wlllps <D 00 =0l
j=0

n—1

. 6p+1
S Ly
= CL,p L 4 y ”Un_j vt‘*”L[’o((Bn,jZP)
j=0

n—1
<cr, 2 :LfJ/Squ(anfl) <c) poqn
Jj=0

Now take the maximum over p. This proves (5.61) and at the same time the convergence
statement of part 2 of the lemma. The last statement of part 2 is trivial to prove. This
completes the proof of the second part of the lemma. U

Lemma 5.10 Under the conditions of the domain D, there exists constants C, 1 indepen-
dent of n such that

Qe "" InGe.a,8, <Cpr g'” (5.66)
10ne™ " lhyap50 < Cp1 & (5.67)
Proof
3
On(Xs e 0m) = g2 %~ QU (R, @3 €,y wit)e n Kon) (5.68)
m=1

3
| Qu(Xs,. @)e~ Vo Xon®) ”h <g Z} H QU™ (K5 ®; . w’(144n))Hh e~ Vo) |h (5.69)

Here X, is a small set because of the support properties of Q,. The last factor will be
estimated by Lemma 5.5. From (4.6) we have

0C(K;,. &1 wy")

n

=4 f dxdy :@(x)P(x)P(X)P()P () P(y):c, w (x — y) (5.70)

Xs

n

We exhibit (5.70) as an element of the Grassmann algebra:

0K, @1 w) = 057 (X, g1 w))

n

+[ dxdy 077 (Xs,, 0, %, y; )y OV ()ie,
X5y,
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4 / dx 05Xy, 3 WD)y ()P ()i,
X5,

+[ dxdy 05 (Rs,, 0. x, y: w{"):y (0 (x)
X5y

x YNV Y):ic, (5.71)
where

09V (X, g w) = 4 / dxdy 0 ()FE)PF)

Xsp
x eM@():c, wiP (x —y)

O3 (X, 0, x, y; w) = 4:0()GE)P(MF):c, w (x — y) (5.72)

05V (Xs,, 0, x;w) =4 / dy:(e()G(y) + p(NG(x))
stn

x o(MNPM:c,wi’ (x — y)

08 (X5, 0, %, y; wh) = 4:0(X) (e, w (x — y)

where, denoting with A(x) the block A such that x € A, we have

. |a if X5, =A
T X, \ A if X, =AU A,

Undo the Wick ordering, which produces lower order terms with coefficients which are
uniformly bounded independent of n by Corollary 1.1. It is therefore enough to estimate
with the Wick ordering taken off. We get

3.3) /v . 1
1043 (Xs5,, @; w)|ln

3,3) /¥ . 1
<1057 (X5, 03 W) lny

+h%  sup [dxdy||Q§3~3>o25n,¢,x,y;w,§‘>>||h3|gz<x,y>|

N <1
le2lle2 52 <1 %,

+h}  sup /dx||Q;3’3)(fr,sn,w,x;w,<,“)||h3|g2(x,x)|
X5n

A <
lezllcaig =1

+h}  sup [dxdy||Q§3’3)o23n,¢,x,y;w,i“)||h3|g4<x,x,y,y>|
<1

||g4||C2(;(§ )=V X,
To estimate the /45 norm of the Q§,3'3) we apply to (5.72) h’;Dk, with D the bosonic field
derivative, hz = cg~"/* and use Lemma 5.1. Contributions for k > 4 vanish. We use g, =
O(g) from the domain hypothesis of Theorem 5.1. We estimate the kernel wV (x — y) using
Lemma 5.9. As a result we get
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1049 (Xs,, ®; w)ln

g 1 g/4 [y, dxlp@(o)?
<C 3/2/ dxdy —— 8/4Jxs, G (X, 573
= %5, T =y e (Xs5,,9)  (5.73)

The integral over X 5, exists and is of O(1) since X, is a small set in (8,Z)3. Therefore

S __3/2 &/4[x. dxlp@())?
1059 (Rs,, &3 w) I < €z "2 0 MO G (X, ) (5.74)
Next turn to Q™ m = 1, 2. From (4.6)
022(X;,, @; C, w?)

= —f dxdy[:(®(x) — D(y)(P(x) — PP (x) + P(Y)(P(x) + P(¥)ic,
Xs,

+:[(@D)(x) — (PDY() i, T (x — y)
We exhibit this as an element of the Grassmann algebra. This gives
02 (X;,, ®; Gy w?)

=08 (Xs,, ¢; Coy w?)

- / dxdy[ Q7 (Xs,. 0, %, y; Cos wP): (¥ (x) + Y O W (xX) + ¥ (M),
Xs,

+ 057 (X5, 0, %, y: Cos w@ )): (W (x) — Y ()W () — F ():e,

+ 097 (X5, 90, %,y Co w): (Y () = Y (9)ic,

+ 0P? (X5 2,y Y () — YO () — TN W () + ¥ ()
x (Y (0) + ¥ ()i,

+: WY ) =Y (M) )ic) (5.75)
where
05 (X5, 03 Cpow?) = fx dxdy w® (x — y)
Sn
x (o) — oM Plex) + e,
+:(lpl ) — el (")) *:c,)
037 (X5, 0,2,y Coy ) = w® (x — y):lp(x) — (M) ic, (5.76)
07 (X5, 0.x,y;: Coy w?) = wP (x — y):lo(x) + () *:c,
0% (Xs,, 0. %,y Coy w?) = 202 (x — ):(l92(x) — lo*(M)xc,
08P (X, x.y, wP) =wP(x —y)
The | - In,G,..4, norm estimate for 0?2 (X;,, ®; C, w®) reposes on the following princi-
ples:

@ Springer



The Global Renormalization Group Trajectory 977

1. Undoing the Wick ordering produces lower order terms with Wick coefficients which
together with their derivatives are uniformly bounded independent of n by Corollary 1.1.
Moreover by the domain hypothesis g, = O(g).

2. By Lemma 5.9, the kernel w'® has the bound |w® (x — y)| < k(|x — y| +8,) 134
where the constant k. is independent of n.

3. The fields ¢(x) are estimated by Lemma 5.1. Differences of fields |¢(x) — ¢(y)| are
estimated by (5.18). This produces a factor |x — y| which we retain, and majorise the Sobolev
factor by the large field regulator. Differences of fields ¢ (x) — p@(y) can also be expressed
as in (5.17), substituting ¢¢ for ¢. This requires estimating (9, ., 9®)(x +--). We apply the
lattice Leibniz which modifies the continuum rule by producing an extra term 8, |95, ., ¢ (x +
|2 (see (5.2), p. 432 of [8]). We estimate the ¢ by Lemma 5.1, with « /2 in the large field
regulator. We estimate the gradient pieces by the Sobolev inequality as in (5.18), and then
by the large field regulator with « /2. We have also produced a factor |x — y| as in (5.18).

Invoking the above principles we get the following bounds for the bosonic coefficients:

h* n
o ID* Q52 (Xs,, 93 Cuy w)|

g x|pp(x 2
<c g / dxdy (Ix — y| +8,) " 125 0, PO (v, 4y (577)
Xs

n

and for j =1,2,3

h* A
A ID QY (Ks, i x. 3. € w P

- - §/4 [y, dxled()
< g =yl 480 f = e TG (x, ) (578
where the maximum value of k which gives a nonvanising contribution is 4 and

fik—=y)=Ix—yP

HLEx—-y=1

(5.79)
=y =Ix—y|
falx—y)=1

4. We must estimate the contribution of the fermionic pieces to the h norm. To this end
denote by F; () the fermionic factor multiplying Q;z,z) in (5.75). Express the differences
¥ (x) — ¥ (y) by the fermionic analogue of (5.14). We do the same also for ¥y (x) — ¥ (y)
and then apply the lattice Leibnitz rule to s, ., Y (x + -). We replace the fermionic pieces

by the functions g», on X 5, U 82)2 s, and their lattice derivatives. Corresponding to F;(v/)
we get the contribution G; which is a linear form on g5, where p; =1for j =1,2,3 and
ps=2.Letd,h;, h; € Z be the component of y — x along the unit vector e;. We have

G =g, x)+g(x,y)+ 80, x)+ g,y
3
1 2
G2:52 Z Z a<3<n,)e[188n,)6;2g2(x+pil(y_x’sil)’x+pi2(y_x’si2))

i1,ip=1 OSS,’I Sh,’lfl, 1=1,2
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3 -1
Gy =80 [0, 820+ pi(y = x,s0), X + pily — ¥, 51)

i1 50
+ 3;5_)e,-82(x +pi(y—x,8),x+pi(y —x,5))

8,010, 07, @205+ piy = X500, % + piy — x,5) |

3
Gi=68. > Y e e, <g4(x+p,~1(y—x,sf,»),x+pi2(y—x,siz),x,x)

il,izzlofs,‘lﬁh,‘l—l,l:LZ
+ex+ x4+ x,y) F g+ pi (v —x,8), X + pi, (Y — X, 8i,), ¥, X)

+ g+ pi, (v —x,85), x + pi,(y —x,5,), ¥, y)) + -

where the superscript on the lattice derivative denotes the argument on which it acts. The
omitted terms -- in G4 comes from the square of the (first order) lattice Taylor expansion of
Y (x) — Y (y) and then replacing the product of 4 Grassmann fields by the test function
g4. For j =1,2,3 we have the bounds

Gl <= 0 fix = Mligalleaiz (5.80)
and for j =4 we have
1Gal = O falx = yligall 2 (5.81)
where
fi=1,  h=k-yP  A=k-y. fi=lx—yP (5.82)

On using the bounds (5.77)-(5.82) we getfor0 <k <4and0< p <2

k) o
W 2D QD (R, 0,05 £ )

ECL§71/2/: d'Xdy (lx_y|+6n)7(%72)
Xﬁn

§/4 [y, dxlpd(o)l?
X e on

GeXo OIS IS g, Ng2ollea i, (5.83)

For k > 4 or p > 2 we have vanishing contribution. The integral over X s, €xists and gives

a contribution of O(1) since X,, is a small set in (8,Z)3. Therefore we obtain from the
previous inequality

R /4 o dxlod(o)
102D Ry, 0. 0)lln < 15~ 2™ 30 PG (%, ) (5.84)

We can estimate in the same way the case m = 1. We have
10""(Xs,, @5 C,w ™)

g x|p@(x) >
<eg !’ f dxdy (v = y]+8,) "2 WG (x, g) (5.85)
Xs,
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The integral over X 5, exists and gives a contribution of O(1). Therefore

100D (s, @5 C,w D)y < g2 5, MG (X, 0 (5.86)
Therefore from (5.69), Lemma 5.5 and the bounds (5.74), (5.84), (5.86) we get
| QX5 e Xon) || <y g2
and since Q,, is supported on small sets we get
1Qne™" " In.Gea, <Crp8'"? (5.87)

which is (5.66). To prove (5.67) we estimate the r.h.s of (5.69) at ® = 0 after undoing the
Wick ordering, set h = h,, and use Lemma 5.5. O

In the following lemma we consider Q,(® + £)e~"*(®*+ as a function of ¢, ¢, ¥, .

Lemma 5.11 Under the conditions of the domain D, there exists constants Cy, , indepen-
dent of n such that

10ne™ " I, a5, < CL.p8" (5.88)

1Qne™" In, G0 ap50 < CL.0E (5.89)

Proof The bound (5.88) follows from (5.66) since (A}K.p > G,. To prove (5.89) we first
express Q"™ (Xs @ + ¢, + n) in the Grassmann representation as in the proof of
Lemma 5.10, substituting in the expressions there ¢ — ¢ + ¢, ¥ — ¥ + n. Field deriv-
atives are defined as in (5.26). For the bosonic coefficients we take derivatives at ¢ = 0. The
resulting dependence on ¢ is estimated by Lemma 5.2. The rest of the proof follows that of
Lemma 5.10. We use Lemma 5.5 which implies that [|e="Xéu-ém ||, - < 21Xsl "and X, is a
small set. O

‘We now prove a lemma to control the perturbative flow coefficients a,,, b, given in (4.15)
and (4.17). This lemma is independent of the domain D,,.

Lemma 5.12 Letv? =C”

cx, L

continuum covariance in R? of Corollary 1.1. Define

— CL,, with pointwise multiplication, where C.. is the smooth

do=2 [ 20 b4 [ a0

We have that a,, by, ac, b.s are strictly positive. Moreover there exist constants c, indepen-
dent of n such that

la.| <cr, || <cr, lacs| < cp, [bes] < cp. (5.90)

and
|an - ac*' = CLL_qn7 |bn - b(‘*| = CLL_qn (591)

where g > 0 is as in Theorem 1.1.
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Remark The convergence rate estimates (5.91) play no role in the estimates of the present
section. They are used in Sect. 6 for the existence proof of a global renormalization group
trajectory.

Proof From (4.16), for p =2,3,using C,,, =T, 1 + Cy1

v =C = Cl =T (T + pTY 2 Cot +8,33C2, ) (5.92)

n+1

with pointwise multiplication. The positivity in Fourier space of the integral kernels on the
right hand side implies that a, > 0, b, > 0 as claimed. The common factor of I',, ; (x) which
has finite range 1 implies that v,(l’:f , (x) has support in the unit ball in (8,,1%Z)*. From Theo-
rem 1.1 and Corollary 1.1 we have that vl’; 41 above are uniformly bounded in L®((8,412)%)
by constants ¢, . By the same arguments v,, has finite range and belongs to L (R?). The
uniform bounds in the first part of the lemma now follow.

By the same arguments using C,. ; = I'c, + C. we have that a., > 0, b, > 0 and vgﬁf)(x)
has support in the unit ball in R*. Moreover using Corollary 1.1 we have ||vf.i’) ller @3y < cr.L
for all « > 0.

Define
@ = / dyv ),  al = / dy v (y) (5.93)
(‘Sn+lZ)3 R3
Then using the compact support property of v,(,’jr) , and v we get
(p)
= a2 < I = oo +{ [ a0 = [ | s
Gn 123 R3

We estimate the first term on the right hand side of (5.94). We have

(») P 14 14
llv,fy — U((,-f)||L°°((s,,HZ)3) SNCur — Corllios, iz T ICE = Coyilli(s,01203)  (5:95)

In the first term on the right in (5.95) we factor out C, ;, — C, 1, and in the second term we
factor out C., — C,,11. Then use of the bounds in Corollary 1.1 gives
p) -
”vn[jrl - vc('f) lzoo(s,4120%) < €r.pL an (5.96)

We estimate the second term on the right in (5.94) using Lemma 6.6 of [8] and the compact
support of v.. This gives

/ dy v (y) - / dy v ()
(5,,+1 Z)3 R3

From (5.94), (5.96) and (5.97) we get with g that of Theorem 1.1

<O v o1y < e, L7 (5.97)

la” —aP| <cp ,L7" (5.98)
which completes the proof of the lemma. ]

Lemma 5.13 Under the conditions of the domain D, there exist constants C,, ; independent
of n such that

10a(e™" —e ™ "ip g, ) ap8, < Cr.pg8" (5.99)
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I Qn(e_vn - e_vn)||h*,c';,(_p,_,4p,3n = CL,pg3 (5.100)

Proof The proof is on the same lines as that of the corresponding Lemma 5.13 in [13]. It
follows from Lemmas 5.11, 5.6, 5.10, and 5.5 which are lattice equivalents of the corre-
sponding lemmas in [13]. ]

Lemma 5.14 Under the conditions of the domain D,, there exists constants C independent
of n such that K, (1) given by (4.10) satisfies the bounds

1Kn )y 6, a8, < CLlng TP for ag* =7 <1 (5.101)
”K()\‘)”h*’é)(p.A!an < CL|A(§11/12_”/3|2 fOr |)\‘§11/12—7)/3| <1 (5.102)
Proof This follows from Lemmas 5.11 and 5.13 and the hypothesis (5.5) on R,,. O

The following proposition shows how fluctuation integration of polymer activities passes
through h and h, norms. It will be put to use in the subsequent lemmas.

Lemma 5.14A

1. Let IE(XB,,, 0, ¢, ¥, n) be a polymer activity (see (5.24) and (5.25)) ~With norms de-
fined as in (5.26)—(§.32). Let h = (hp,hr) and h, = (hpy, hr). Let Ku(X(;n,q), V) =
fd,urn @)dpr, MK (Xs,, 0,8, ¥, n). Then for hr sufficiently large depending on L we
have

B2 (Xs)ln, < / dur, (IR (X3,.0,,0,0)]n, (5.103)
IK*(Xs,,¢,0)|ln < / dpr, (OIK(Xs,,9,¢,0,0)ln (5.104)

where the norms on the left hand side are as in (2.16)—(2.18).
2. Let K(X5,, ¢, V) be a polymer activity in Q°(Xs,) and let K*(Xs,, ¢, ¥) = [dur, (¢)

dur, MK (Xs,, ¢+, % +1). Let h= (hp, ") and h, = (hp,, "L). Then for hy suffi-
ciently large depending on L we have

|KF (X505, S/durn(C)IIK(Xan,C,O)IIh* (5.105)
IK*(Xs5,. 0,0l < /dltrn(é“)llK(Xan,w+§,0)|Ih (5.106)
where the norms on both sides are as in (2.16)—(2.18).

Proof We get from the representation (5.25) and using the notations introduced there
((5.24), (5.25))

- 1
# — § 2 :
K (XB;,’Qﬂvw)—/dﬂFn(C)[ )S\IHJ\|[|!|15|!|J|!|Jc|!

>0 Ic{lp
P Jc{l,...,p}

x /ZP dxdy D" K (X5, 9, &, %1, X1¢, ¥, ¥ 7¢)
X5

Sn

x Y (x)¥ (yy)detr, re je(Xpe, yse) X (—l)n:| (5.107)
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Note that |/¢| = |J€| since |/| = |J|. The matrix detI", ;c ;e is an [1°] x |[I¢] square matrix
whose entry (I'; jc_jc) s iS given by

(I‘nlﬂ‘lf)rs = Fn (xr - ya) (5108)

forr € I°, s € J¢. (—1)* is a sign factor which it is not necessary to specify. It may change
from line to line.

‘We have
W
(J’)zD IR (Xs,, 9,0, £, 27)
R
Z/dﬂr,,({) Yo g VLTI T

p>0 IC(l AAAAA )
cll

x/ pdxdyD'g’Dip’”I%(Xan,QD,C,XLXIC,YLYJL';fxm)
x2

on
X &2 (Xy, yy)detr, e je(Xpe,yye) X (—l)n:| (5.109)

By definition g,;(x;,ys) (note that |[I| = |J| = j), is antisymmetric in the members of x;
and in the members of y;. The determinant is antisymmetric in the members of x;c and in
the members of y .

Therefore the function

(g2j ® detr, je je) (X1, Xpe, Y7, Yse) = g2 (X1, yy)detr, je je(Xje, ye) (5.110)

on X‘” X“ ! Xm X'JZ = X is an admissable test function for the norm defined in
(5. 26) (5. 27) Hence we get from (5 109) and (5.110)

ng|D2]ﬁmI€ﬁ(X5n’ 0,0, fxm’gzj)|

R20

F
g /dm;)[z > St T

p=0 lc(l ..... )
..... P}

m
|| D*P1 K (X5, 0.2,.0. 00 TT11fillc2ex,,
j=1

x|82; ® detr,,i,lcgjc||cz(x52p):| (5.111)

We have
llg2; ® detr, je e ”CZ(XZP) 182, ||C2(X§J‘)||detr,1,1€,1f||c2(X§(p—j)) (5.112)
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where X;/ = X}/ x X}''and X;" = X} x X", since || = |J| = j and 1| = |J¢| =
pP—J

Let 8§‘" be the lattice forward derivative of order k in multi-index notation. By part (5a)
of Theorem 1.1 we have

0T3§4||3§n Lol poo(s,2)%) < CL (5.113)

where C is a constant independent of n. Relabel (§i,...,&p—j) = (x1, ..., Xjre, i, -0,
Yis1c) where the x; € I¢ and the y; € J¢. Let now 3(];: be the forward lattice derivative
of order k., 0 <k, <2 with respect to the points &.. Let K = (ki, ..., ky,—;) and de-
fine 8 = r[,z.(:pl_j ) 8;": . Let 8§ act on the determinant. This produces another determinant
with derivatives acting on the matrix elements I',,(x, — y;). Since I',, is positive definite
these matrices can be written as Gram matrices by a standard argument. Thus the matrix
Ay = 8;: 8;: [ (x, — yg) with (x,, y5) € X5, X X5, can be written as a.; = (f, &) 12(5,2)

1 1
where f,(-) = 3T (x,,) and g,(-) = 3;°I'7 (-, y,). Gram’s inequality says |det a,,| <
—J —Jj kr k,\'
Hf:{ I fr ||L2((5,,Z>3)1_[f:1] llgsllL2(s,2)3)- We have | f; ”22((3,,2)3) = 05, 05, (X — X5)|r=s-

Similarly, lg;132 5, 23 = 385 T (¥, — ¥y)l—s. Since 2k, < 4, we have by (5.113) the
bound ”f’”iZ((s ) = Cy. Similarly ||g“”il((5 2% < Cp. We therefore get
10X detTy e je(Xpe,yse)| < CP77 (5.114)
Hence
l[det T, e yell <cr (5.115)

Cz(Xg(pﬁ')) =
From (5.114), (5.112) and (5.111) we get
2

h L
(jf)z ID*" K*(Xs,, 9, 0)]|

L\’ hy
< [omo| T % o) s s

>0 Ic{l,..., p}
p= Jcil,...,p}

x | D*P 1K (X5, 9. 2,0, 0>||} (5.116)

Now choose hr sufficiently large depending on L such that th > Cp which implies that
(E—ZL)I’*/' < 1. Putting in this bound and then summing over j we get
F

WY i hy
D" K*(Xs,, 9,0 </d S e———
Z(j!)zll X5, 0.0 < [ dur, @ Y > T EINGT
j=0 p=0 Ic{l,...p}
Il
x | D* K (Xs,, 9,0, 0)||i| (5.117)
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m
hB

Set ¢ =0 in (5.117). Multiply both sides by £+ and sum over m, 0 <m < mg. Majorize by

dropping the constraint 87 on the right hand side. This gives
|K#(X5,)ln, = / dpur, (£) 1K (X5,.0.2..0,0) [,

On the other hand multiplying both sides of (5.117) by h%; and summing over m, 0 <m < my
gives

IK*(Xs,, 9, 0)lln < /dﬂr” (O IIK (Xs,,9,¢,,0,0)]ln

This proves the first part of the lemma.

We next turn to the second part of the Lemma. This is a consequence of the first part and
Lemma 5.4A. Define IE'(X,;”, 0, ¢, %, n) =K(Xs,, 9+ ¢, ¥ +n). Then from (5.104) of the
first part and (5.34) of Lemma 5.4A we have

IK*(X5,, 0, Ollz = I1K*(Xs5,, 0,0l < /d,ur,, OIK (X5, 9,¢,0,0)]|;

< /dur,,(C)llK(Xan,fﬂ+§,0)|Ih

which proves (5.106). Equation (5.105) follows similarly by using (5.103) of the first part
followed by (5.35) of Lemma 5.4A. O

The following lemma generalizes Lemma 5.15 of [13] to the lattice and the additional
presence of Grassmann fields. It will play a key role later in obtaining contractive estimates.

Lemma 5.15 For any polymer activity k(Xgn O+, +n):
IK (X5,.¢,0)[In, < O()G (X, )
x [IK (X5,)In, + 5" W2 K (X5,) Inc, ] (5.118)
1R (Vs 6, 0)lln < Oy’ 25, 007G (7, )
< [IK(¥s)In + L7 N K (Y3l 1oy ) (5.119)
|K*(X5,)l5, < 0125 [|K(X5,)In, +h5" W2 | K (X5)lhc, ] (5.120)

IR (X5 i, < 27 1K (X5,) G, (5.121)

where G p.c 15 as defined in (5.19), and mo =9 is the maximum number of derivatives ap-
pearing in the definition of Kernel and h norms. In (5.119), Y5 , Zs,,y are as described
in Lemma 5.1. Moreover in the above norms h, = (hp, hp,), and fl* = (hTF, hps) where
hps = (o)~ h= (hp, hp), h= (%p, hg), hg =cg~*, c=0Q) very small, and hp is
taken to be sufficiently large depending on L.

The superscript #f stands for dur, (¢) integration. p is chosen as in Lemma 5.3, and « as
in Lemma 2.1. Note that we have that the constant C(p, «, j) appearing in Lemma 5.2 (this
bounds ¢/) satisfies

Cp, K, j)=hl,00) (5.122)
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Proof We will first prove (5.118) following the lines of the proof of Lemma 5.15 of [13]
where the Grassman fields were absent. Recall from the definition in (5.30) that

mo

- h™m
1K (X5,,0,0,£,0,0)[ln, = ) —2*4, (5.123)
= m!
where
h ~
A=Y =22 D" K(X;,.0,0,£,0,0)]| (5.124)
m!
p=0
First conside the case m = m. Then
Amg W05 1K (X5, In.c, G p.x (5.125)
since G, < G,},K. Now let m < my.
We expand in ¢ in Taylor series with remainder
. mo—m—1 . . )
(D" K)(X5,. 8.0 " ) = D 7(1)21”“'"10()(5,1, 0.0: f*". 077, g2)
j=0 7
1 ! -
7/ ds(1—s)m~""1(D*»"K)
(mo—m—1!Jo
X (X, 88,05 f7", 0707 gy)) (5.126)
Therefore
mo—m—1 1
2p.m i 2p,j+m g J
1D K)(Xs,, ¢, 0] < ZO @R Koy 0. 008 gy,
J=
1 ! .
_ moy—m— mo—m
7(,”0_"1_1)!/0 ds(1=)" " gs
x [(D*P"™ K)(Xs,, 58, 0)]
Hence
moy—m— 1( +m)
An< Y e hpl 181, 1K (X5,) In,
Jj=0

mq 3. —m, 1
mo!thhB ’ ds(1 — S)mofmflh*(mO*m) ¢ ”'"O*m
m!(mg—m —1)! J B C*(Xsy)

X |K(X5) Ih6, G px(Xs5,,5¢)

By Lemma 5.2, with ¢ replaced by /1 — s%¢, and (5.122),

halE gy, < O G KXo, V1 =82 ) 7575 (5.127)

2),/2
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where 0 < s < 1. With s = 0 this bound is applied to the terms in the sum over j. For the
Taylor remainder term take j = my — m and note that (1 — s)™0="/2=1 i5 integrable since
mq > m. Hence:

Aw <0G, (X, )

mo—m—1 mgy 7. —m,
G+ m) mo! B:z '
~———||K(X — BB k(X
x|: ; T 1K (X5, n, + P T— ])‘H (Xs5,)lIn.G.
< 0MGpu(X, ;)[HI%(X(;,,)uh* + k" 1R (X5, lIng, | (5.128)

Summing (5.128) over 0 < m < m( — 1 and adding (5.125) proves (5.118).

Inequality (5.119) is also proved in the same way as (5.118). We are estimating the h
norm which is given by (5.34) with h, replaced by h, hgx by hp and ¢ by ¢. We replace
G p.xc By Gi. Then (5.125) remains true with ¢ replaced by ¢ and G 0.« replaced by Gy.
Subsequently for m < m, we expand in Taylor series as above but now in ¢. We do the
norm estimate as above but now using Lemma 5.1 in place of Lemma 5.2. For ¢ sufficiently
small depending on L we have g sufficiently small and therefore hgl is sufficiently small.
Hence thC < 0(1) where C = k~7/20(1) is the constant appearing in Lemma 5.1. In the
Taylor remainder term we replace 4z by L% hg. which leads to the factor L0

Finally note that the inequality (5.120) now follows on using (5.105) of Lemma 5.14A,
followed by (5.118) and then Lemma 5.3. Equation (5.121) follows from (5.106) of
Lemma 5.14A on using the stability of the large field regulator G,. ]

The next lemma extends Lemma 5.16 of [13] to the case when Grassmann fields are also
present.

Lemma 5.16 For any q > 0, there exists constants cy independent of n such that for L
sufficiently large, ¢ sufficiently small and hr sufficiently large depending on L,

e S <q when 23" <¢p (5.129)

q-Ap»a)H»l

ISk, K)*In, <q when 2g""*" <¢, (5.130)

VApSus
where h, = (hp,, hr) and ] denotes integration with respect to dur, , (§), I'yp = ST,
being the rescaled fluctuation covariance.

When R, =0 we may set n =0 in (5.129) and replace »g''/'>="/3 by Ag'/>=%/2 in (5.130).

Proof We suppress the dependence on A which plays a passive role in most of the fol-
lowing and make the dependence explicit towards the end when necessary. We will ap-
ply the first part of Lemma 5.14A to the reblocked polymer activity BK,(LZ;,, S, ®,§) =
BK,(LZs,, Sp¢, ¢, Sp ¥, n) which is a functional of K, and P, where K, Xs,, 0. ¢,%,n) =
K, (Xs,, 9+ ¢, ¥ +n) (see the definition of reblocking in Sect. 3.1). Recall the definition of
rescaled polymer activities and rescaled covariances given by (3.22) and (3.21) in the Ap-
pendix to Sect. 3. The rescaled, reblocked activities are defined by (3.25). We get by virtue
of (5.104) and (5.103)

IS(Kn)(Zs,,1 95 0)In < /durn.L(C)II(SLBKn)(Za,,,<p,C,O)Ilh (5.131)
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IS(Kn))*(Zs,.)lh, < /dMF,,.L(é‘)”(SLBKn)(ZBn’O’gvo)Hh* (5.132)

We now prove (5.129) starting from (5.131). This follows the lines of the proof of
Lemma 5.16 [13]. Unfortunately, in the latter proof a minor error crept in A. Abdesselam
(private communication) and we take this opportunity to correct it. Inserting the definition
(4.11) in (5.131) and using the multiplicative property of the h norm we get

[ (S(Kn)”)(Zan+1 +9,0)In

< Z Z ”e—%,uzsm LT (X, 4 UAs, )09) I

N+M>1 ! (X{;” ) (Bsy )>LZs, |

N M
x / dpr, @O [ 1K (L™ X5, 5. 0. 2.0 In [ [I1PL (L7 As, 000, 2.0)n

j=1 i=1

whence
I(SKDNZs, 1 0. 0)In

1 N
Szlzénﬂ‘ Z W X Z /dﬂr,,(f)Gx,p(XSn UAgn,SLqﬂ,C)

N+M=1"""""  (X)).(As, i)~ LZs,

X H 1K (X, 6., ﬂ 1P (A5, D, 6., (5.133)

j=1
where h, = (L™ %hp, L~ hp), X5, = J X, j» As, =|J As, ; and we have bounded e~ "L

using Lemma 5.5 which continues to apply.
Lemma 5.4 bounds the ¢ integral by

2K Bl Gy (X5, U Ay, Spp) < 2%Vl G (L7 (X5,,, U As,,,), ¢)

21X 1_[2IA5,, A‘G (Zén+1 )

1 i=1

‘:Ii

J

since L~'(X;,,, U As,,,) C Zs, . Moreover for L sufficiently large

n+1 n+1°

1Ky (XD, ¢, < IKaXDlli 6, , < IK(XD s,
where we have used Lemma 5.4A, (5.34) in the last step. Therefore

1(S(Kn))(Zs, ;) InG,

M
1
1Zs,, 1 X501 N
=2l 30 Snn 2 TP IK)e,,

N+M=1"" """ (Xg,, ). (Asy 1) —>LZs, j=1

N
x [ 2% NP (As, Dy s,

i=1
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From this point on we proceed as in the proof of Lemma 5.16 [13], the only difference being
is that now we are on a lattice. The condition on the sum over the polymers above implies
that Z;, = | L*'XBLM.) U (UJL™"A§ ). This also implies that Z;,,, = (U L*'XBLHH-) U
(@] L‘1A§+1 -

Multiplny both sides by A,(Zs, ) and observe on the right hand side

n+1

M N
Api1(Zs, ) < [ A ' X D [ A1 @7 A0

j=1 i=1

M N
<OV M ALK s, ) [[A2(As,.00)

j=1 i=1

where we have first used the fact that the L-closures of the polymers are connected by
definition of the reblocking operation, then Lemma 2.2 together with | X5, ., | =1X;s,| and
|As,,1.il = |As,.i|. The last observation follows from our definition of polymers in Sect. 1.3
and (1.79). Therefore

IS KD (Zs, ) InGe Ap(Zs,,,)

1 M
= 2 oo™ > [T e, A (X5a,)

N+M=1 (Xj),(Ag, i )—>LZ j=1

N
< [ TP (As, D)l 6, A1 (Ds,.0)

i=1

Fix any A;, ., and sum over Zs ., > A;, . This fixes on the right hand side the sum over
Zs, > A, with A, fixed by restriction. The spanning tree argument of Lemma 7.1 of [15]
controls the sums over N, M, Zs,, (X;5,), (Ais,) — LZ;s, with the result (we have now
made explicit the dependence on 1)

(SO Ki) ) n.Gy. Ap.bus

N
=0 Y 0 L (1K@, , a5, + 1P g, a,)
N>1

The proof of (5.129) is completed by Lemmas 5.8 and 5.14. When R = 0 we can use
Lemma 5.8 and replace Lemma 5.14 by Lemma 5.11.

To prove (5.130) we start from (5.132) and proceed as before. We replace CA;K, o by GK, 0
and then use Lemma 5.3 to estimate the ¢ integral. We use (5.35) of Lemma 5.4A. Proceed-
ing as before now leads to

(8Os Ki)Dlhe Ay b

N
oMy 0(1)NL3N(IlKn(k)Ilh*,GK_p,A,,g,, + IIP(k)IIh*,aK,p,A,,s,,)

N>1

Now use Lemmas 5.8 and 5.14 to complete the proof of (5.130). Finally when R = 0 use
Lemmas 5.8 and 5.11 as before. ]
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Estimates on Relevant Parts and Flow Coefficients from the Remainder

Let (@, p) be the coefficients (¢&,,2,0, @n 2,1, &, 5 1&,,4) defined in (4.43) and (4.61). The flow
coefficients &, g, pn g are given in (4.53).

Lemma 5.17 Under the conditions of the domain D, we have

IR i aoay 50 < & (5.134)
IR g, a5, < O (5.135)
|G, plas, < O(Dg'/4" (5.136)

&, < C g+ (5.137)

lpal < CLg" 4" (5.138)

where the constants Cy, are independent of n and &

Proof Equation (5.134) follows from (5.7) and Lemma 5.15, (5.121). Equation (5.135) fol-
low from (5.8) and Lemma 5.15 with m( = 9 and ¢ sufficiently small depending on L so that
g is sufficiently small. In fact in Lemma 5.15 (with K = R,) the first term has the desired
bound by (5.8). By (5.7) together with hgl = cg% and hpg, = hp.(L) we see that the second
term is bounded by 0(1)g%h%*g1 1/4=n < g!1/4=1 for g sufficiently small.

Recall that &, p (X5, ), are supported on small sets. Then (5.136) follows from (4.61) and
(5.135). In fact the dominant contribution comes by setting V, = 0 because the difference
gives additional powers of g. Then we have

16, pllas, < O(Dn(PYB;" P 1REG o

where n(P) is the number of fields in the monomial P, we have used the shorthand nota-

tion ﬁ;”‘P) = max,l(p)ﬁ,,(P)B:,,(p)(h;g(P)BlAz;"(P)F) and 1 is the indicator function on small

sets. Now use (5.135) to get (5.136). Equations (5.137), (5.138) follow from (5.136), the de-
finitions (4.53), (4.51) and Wick coefficients C, (0) are uniformly bounded by a L dependent
constant by Corollary 1.1. O

Lemma 5.18 Under the conditions of D,, and ¢ sufficiently small depending on L, there
exists a constant Cy, independent of € and n such that

8wt =8l <2082 |t < €13 (5.139)
Proof 1t is convenient to define
&n=28n—8&
Then from the flow equation (4.39) for g, and the definition of g in (5.2) we get
Znr1 =2~ L)+ (5.140)
where

gn = —L2€ac*§5 - LZE (an - ac*)gi + SV! (5141)
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From Lemmas 5.12, 5.17 and g, € D, we get for ¢ sufficiently small depending on L the
bound

&, < Crg? (5.142)

Therefore
_ _ e
[gnt1l <vgl 2—L )+7g (5.143)

For ¢ sufficiently small depending on L we get
c
‘(I_Le)Jr_Lg,‘Sl (5.144)
v

Therefore |g,+1| < 2vg which proves the first inequality of (5.139).
The bound on . follows from the second of the flow equations (4.15), on using w,,
gn belong to D,,, Lemma 5.12 and the bound (5.138) on p,. U

As stated in Theorem 3.1 borrowed from [6] the assumption of stability of the local
potential with respect to perturbation by relevant parts (see (3.18) ensures the extraction
estimate of (3.19). The following lemma proves the stability for the case at hand, namely
that of Vn’ 1 (A,+1) with respect to the relevant part F,, defined in Sect. 4.

Recall from (4.12) that F, (1) = A*Fp, + A3 Fg, and from (3.15) that (each part of) F,
decomposes: F,(X;,,,) = ZA511+1 F,(Xs .., As

CX(gnJrl n4172 n+1)'

Lemma 5.19 Forany R > 0 and & := R max(|A2|g, |A3|g7/4™") sufficiently small,

VL (B D=y o8t Koy VFOKo, y Bu)
n

lle IhG, <2° (5.145)

where z(Xs,,,) are complex parameters with |z(Xs,, )| < R.

Proof 1t is easy to see that Lemma 5.5 still holds if we replace v, by \7,14, L provided ¢ is
sufficiently small. This implies that g is sufficiently small. We then have

- ",,.L<An+1)—2x5”+l Sy ¥ Koy VFGXs, ) Ausl)

lle lIn

5 - 242
o E S BROP P T s o,y RIFGLXs, 1 Sl

<2 (5.146)

Recall that the relevant parts (X5, ,, A,41) are supported on small sets X, ,. The proof
now follows easily from the following O

Claim For ¢ sufficiently small
|2(Xs, DNF O, Xs, 10 D) lln
< CLs<g / ()’ + 8210 llay 15+ 1) (5.147)
JAVES]
where ||¢||2A"+1,14,5 is the square of the lattice Sobolev norm defined in (2.1).
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Proof of the Claim We have [[F(k, X5\, Aws)lln < A1 Fo(Xs,.,, Aur)lln + AP x
| Fr(X5,, s Bnt1)lln-

Consider (4.27)—(4.31). Undo the Wick ordering on the superfield field and note that, by
virtue of supersymmetry, no field independent terms arise. The m = 1 term in (4.30) remains
unchanged and in the m = 2 case there results an additional contribution —2C,_;(0)®®.
The Wick constant C,,1(0) has a uniform bound C which depends only on L by Corol-
lary 1.1. We write this in the Grassmann representation and notice that for the m =2 case
the v (x)? contribution vanishes by statistics. From the definition of the h norm with
hg=cg~"* and hyp = hp(L) we get the bound

1 Fo(Xs,. 1> Any)lln

sch2< f x| @iy sup 1£5 (Xs,p12 X Augr)]
An+1

XEAp 41

2
+( / d3x||<|¢|2><x)||h5+1>2 sup |fém)(Xan+],X,An+1)|>
Ay

m=1 XEA[ 4]

Now form =1,2

5’/ x| (o))" ®)lny < O(1) (é/ dx (o) (x) + 1)
Apyi ntl

From the definition (4.31) and the estimates obtained in the course of proving Lemma 5.12,
we have

sup [ £3" (Xs,0,. X, Ani)| < Ct

XEA 41

Therefore

|x2||z<x3n+l>|||FQ<X5,I+1,A,1+1>||;15CLR|A|2g<g / dx(|go|2)2(x)+1> (5.148)
A

n+1

Next consider Fg,, supported on small sets, defined in (4.43), (4.46). Recall (4.48),

Fr(Xs,,,, @)= / dx ap(Xs,.,,, x)P(®(x), d,,, D (x))
P A

n+1

By Lemma 5.17 and (4.49) we have |ap(X; .., x)| < C g!"/*7", so that

n+17

AP 12(Xs, , D FR (X5, 415 Aug )l

n+1

< CLRMPg““*"Z/ dx || P(®(x), 35, D)) In
P A

< cLRMPg”“*"(g /

Apyi

dx (I9)?) + &2 le 6,015 + 1)

The claim follows by combining this with (5.147). In the above inequality the Sobolev
norm when estimating the term giving arise to ¢ds, ,¢. We bound |¢3s, . @| < 1/2(/|¢|*| +
|05, ,L¢|2) and then use the lattice Sobolev embedding inequality. O
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Lemma 5.20 For any R > 0 and & := R max(|A2|g2, |A3|g"V/4~") sufficiently small,

VL (B )=y o8t Koy VFO-Xo, y Bu)
n

b <22 (5.149)

|*—

le

where z(X) are complex parameters with |7(X)| < R.

Proof The proof is similar to the previous one except that we can use the estimate
|F (A, X, A)ln, < CL& in place of (5.147) since the h, norm is computed with field deriva-
tives at & = 0. O

We will now bound the remainder R, given in (4.41). It consist of a sum of four con-
tributions, namely R, mains Rn+1.linears Ru+1,3 and R, 4 which we will estimate in turn.
These estimates parallel those obtained for the continuum bosonic theory in [13].

Recall from (4.36) that

1 [ dx s
Ry 41, main = i Fg S(A, Qe )", Fo, (M) (5.150)
Y
Lemma 5.21
I Rt main .Gy, 45,0, < Crg"* (5.151)
| Ru 1 mainlny, a8, < Crg>? (5.152)

Proof The proof is identical to that of Lemma 5.21 of [13] except that we replace ¢ by g,
put in lattice subscript n where appropriate, and note that the field independant piece Fj is
now absent. We apply Theorem 3.1 (which is a restatement of Theorem 5 in Sect. 4.2 of [6])
instead of Theorem 6 of [6]. (Il

Recall from (4.38) that

1 di
Rysis= Ef w0 (80 K% EG) (5.153)
Y
Lemma 5.22
IRys13 00,6 4800, < Crg' ™""? (5.154)
|Rut13lh,, a5, < CL8"07 417 (5.155)

Proof The proof follows the lines of that of Lemma 5.21. To prove (5.154) we take the
contour y to of radius [A| = ¢, g~1/47"/3_ This ensures that the hypothesis of Lemma 5.16,
(5.130) is satisfied and & of Lemma 5.19 is sufficiently small so that stability holds. Equation
(5.154) now follows from the extraction estimate (3.19) and the Cauchy bound as before.
To prove (5.154) we take y to be of radius |A| = ¢, g~/97"/3 Then for g sufficiently small
the hypothesis for (5.130) of Lemma 5.16 is satisfied. Moreover then & of Lemma 5.20 is
sufficiently small and Lemma 5.20 holds. Equation (5.154) now follows from the extraction

estimate (3.20) and the Cauchy bound as before. O
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From the definition of R, 4 in (4.40) we have

Rn+1,4 = (67\41+1 —e n’L)Q(Cn-Hv Wit gn+1) + e*V,,,L Q(Cn-H > Wi, (g,%Jr] - giL))
Lemma 5.23
I Rys1.4ln.Gy 48001 <Cr8?, |Rus1.4lb, 45,0, <CLE

Proof The proof is the same as that of Lemma 5.23 of [13] except that we replace ¢ by g,
insert lattice subscript n as appropriate and use the lattice counterparts (that we have already
established) of the lemmas exploited in [13] for the proof. O

Lemma 5.24 Let X;, be a small set and let J(X;,, ®) be normalized as in (4.59). Recall
that the rescaled activity Jy is defined by J|, (L’lXanJrl Lo, ) =J(Xs,, @11, Y1) where
@r-1 =S8r@ and Y- = Sy . Then we have

1. For2p+m =2 so that (p,m) =(1,0), (0,2)

ID*" I (L™ Xs,,,,0,0)[| < O(HL™T=92|D*" ] (Xs,,0,0)] (5.156)

n+17

2. For2p +m =4 so that (p,m) = (2,0), (1, 2),(0,4)

1D Iy (L™ X,,,, 0, 0)[| < O(DL™ =2 D> J (X;5,,0,0)] (5.157)

n+1°?
Proof In the proof of this lemma we will need to use the lattice Taylor expansion introduced
in (5.13), (5.14) and (5.15) with a particular choice of a lattice path joining two points. The
polymer X, being a small set is connected. It can be represented as X5, = X N (8,7Z)> where
X is a continuum connected polymer which is a small set. By the argument in the proof of
Lemma 5.1 it suffices to consider the case when X, is a block. Then the lattice path lies
entirely in X, .

Let u; be a function defined on ()?gj))k for k > 2. In the following u is one of the test
functions of Sect. 2.2. Thus u will represent either one of the functions f; defined on X éf)
giving a direction for a bosonic derivative or a function g, defined on (f(gf))zl’ = (f( f;i))l’ X
(X gf))” associated with a fermionic derivative of order 2p. Note that g, is restricted to be
antisymmetric in the sense explained in the lines preceding equation (2.12). The C2(X§n)
norms of these functions for k = 1, 2p are defined as in (2.14) and (2.15) of Sect. 2.2.

We recall the definition of the rescaled function

X
Spup(x) =uy p-1(x) = Lik‘“uk(z>
Observe that
g2t y < L7 Nurllcag1x (5.158)
kL=tlc2(xy ) = kllc2(L- X541 :
Let e}, es, ..., ey be the basis vectors of (8,Z)%. Let x = Z?il(x, e;)e; denote a point
in Xg‘”. Fix a point x € X]g". We write x — xog =, Z?il h;e;e; where h; are non-negative

integers and &; = sign(x — xo);.
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994 PK. Mitter, B. Scoppola

From (5.15) we have

3k
uk,L_l (.X) = I’tk,L_1 (xo) + Z((x - XO), ei)aa,,,siei Mk,L_1 (XO)

i=1
3k hi—1hj—1

+83 Z Z Z 85n,£iei35n,£‘j€juk,L’l(x() + pj(pl(x _X(),S,'),Sj))

i,j=15;=0s5;=0

The argument of u; ;-1 in the last term lies entirely in X ’g" since X, is a block.
Define

Suy -1(x) = wy p-1(x) — uy -1(x0)

3k hf—l

=060 ) Y Bsyeje; i1 (0 + pj(x — x0.5))) (5.159)

j=115;=0

and

3k
8y 1 -1(x) =y 1 (x) = g -1(x0) = D (X = X0), €1)s, 16, g, -1 (X0)

i=1
3k hi—1hj=1

=34, Z Z Z 05,1, e1e; 08,2 e Ui, .1 (X0 + P (pi(x — X0, 5:),5;))  (5.160)

i,j=1s;=0 Yj:O
Now from (5.159), (5.160) we have using the definition of the rescaled function u; ;-1

3k hj—1
3—¢
Sug 1 -1(x) = L7508, 33 (3, 0,0, u0) (L™ (X0 + pj (x — X0,57)))

j=15;=0
and for/ > 1

8} Suy 1) = L5900 ) (L' x)
where for 8§n a multi-index convention is implicit. This implies that

—(14k 3£
”(Suk,L—l ||C2(X§n) <c L (I+k =3 )||uk||C2(L71X§ D (5.161)
n+

where ¢; = O(1) since X is a small set. In the same way starting from (5.160) a little bit of
work shows that

1% 1 et ) < L™ Nl gy (5.162)
n n+
where ¢, = O(1).
We will first prove the bounds of (5.156).
Consider first the case (p, m) = (1, 0). We have
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D*°J (L7 Xs,.,,0,0; g2) = D*°J(X;5,,0,0; g5 ,-1)

= D*"J(X;,,0,0;8%g, ;1) (5.163)

n+1°

where we have Taylor expanded the function g, ;-1 as in (5.160) and then used the first and
second normalization conditions in (4.59). Therefore

ID*JL(L™'X;,,,.0,0: 82)| < DT (X5, 0,0)[| 8% -1 22

n417
< 0(1)L*(7—s)/2“DZsOJ(X(g" O ||g2||C2(L71X§ W

where in the last step we have used the bound in (5.162) for k = 2. This proves the case
(p, m) = (1, 0) of the lemma.

To prove the case (p, m) = (0, 2) we Taylor expand the function f;-1(x) to second order,
then use the first and the third conditions in (4.59) to get

D*?J(Xs,,0,0; ;%) = D**J(Xs,,0,0; fy 11 (x0), 8> o 1-1)
+ D" (X5,,0,0;8% fi 1, fo.1-1(x0))
+ D*?J(X5,,0,0;8f; 1-1,8f5,-1) (5.164)

Therefore

|D*?J(Xs,,0,0; f;%)] < ID**J (Xs,,0,0)] (||f1,L71 le2cxs, ) 18% o1 lc2x,, )
+ -t ez xs,) ||62f1,L*1 lc2(xs,)

+ 18f1 -1 ez 181 e, )

2
< 0L~ 72D (X, 0,00 [T fillerrx, )
j=1
where we have used the bounds (5.158), (5.161) and (5.162) for the case k = 1. This proves
the case (p, m) = (0, 2).
Next we prove the bounds (5.157). For this case (p,m) = (2,0), (1,2), (0,4) so that

2p + m = 4. Taylor expand test functions around the fixed point xy € X, to first order with
remainder. We get for (p, m) = (2, 0)

D*J (L™'X;,,,,0; g4) = D*°J(X;,,0; g4 1) = D*0T(X5,,0;8g4,-1)  (5.165)

where we have Taylor expanded the function g4 ;-1 as in (5.159) and then used (4.58).
Therefore exploiting the bound (5.161) for k =4 we get

|D4,0JL(L_1X6 07 O; g4)| < 0(1)L—(4—8)||D470.](X3", 0)” ||g4||c2(L—IXg1 +])

n+1°

which proves the case (p, m) = (2,0).
Next we turn to the case (p, m) = (1, 2). We have
D*?JL(L7'Xs,,,,0; f72, )
=D*?J(Xs,.0: ;5. &.0-1)
= D>?J(Xs,.0:8f, 2. £, 82.1-1) + D2 (X5, 05 f12) (x0). 81,21 82.1-1)

+ D*2J (X, 0: £, (o). £, (x0), 8821-1) (5.166)
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where we have used the fourth condition in (4.59). Therefore

|D>?J (L™ Xs,,,.0,0: £2, g)
<1022 (X, 0, O (18,2 ey IL£ 2 ezt 182 ez
181, ez 12 ez, 182, ez
+ 1882 Dz I £ ez £ ez )
Then using the bounds (5.158), (5.161) for k = 1,2 and (5.162) for k = 1 we get

|D*2J,(L7"X5,,,,0,0; 2, g0

2

= 0L D2 Ko, OIT I PNl I8l
j=l "

which proves the case (p, m) = (1, 2).
Finally we treat the case (n,m) = (0,4). Let Ny = (1,2,3,4). Then using the fourth
condition of (4.59) we get

D**JL(L7'Xs,,,,0,0; £ = D**J (Xs,,0; £4)

= > D™J(Xs,.0; fr10e0) ! 810
ICNy, | 1#4

n+17

where [l = (f})]jer.
Therefore

|D**J (L7 Xs,,0,0; %))

0.4 1] I1cl
<UD T (X5, 0,00 3 by, N8fi-i ey, |
ICNy, |1 |#4

Because of the condition on / in the above sum |/.| > 1. Therefore using the bounds (5.158)
and (5.161) we get

4
|D**J (L7 X5,,0,0; ] < O(DL™ 42| D" J (X5, 0)| ]_[ Ifille2w1x5,, )
j=1

which proves the case (p, m) = (0, 4) and thus completes the proof of Lemma 5.24. ]

Corollary 5.1 Let Vs, = L™'X;,, where X is a small set, Zs
J(Xs,, ®) be normalized as in (4.59). By definition Ji (Y

= L~'XE  and let
n n+1
q)) = J(Xgn, SLqD) Then

n+1°

L (Ys,, )l < OL™ 7217 (X)), (5.167)

n+1

1L (s, e = e onst [y 6 < O (D)L=
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(o 1 Xl | (5169

L (Y5, ), < OL™T"211 (X5, (5.169)

where (see Lemma 5.15) h= (sz, hg), ﬁ* = (sz, hpy) and sz =hg/2.

Proof Equations (5.167), (5.169) follow easily from Lemma 5.24 taking advantage of the
scaling present to shift from h to h. To see this observe that since i = 2hr we have from
the definition of the h norm

oo mg

1L Fs )= th" 22" ID>" I, (¥, O) (5.170)

n=0 m=0

Only terms with 2n + m even contribute. For 2n + m < 4 use Lemma 5.24 and observe
that 22" < O(1). For 2n +m > 6, we have for L sufficiently large and ¢ sufficiently small
depending on L

B-¢)
T

22 D* " I (Ys,,,, 0)|| < 2" L™= | D g (X5, 0)]|

n+17

6-1-o
5 L—(2n+m) s ||D2n’mJ(X5n, 0)”

< O(l)L_U_S)/z||D2’”"J(X3", 0)”

Putting the two case together in (5.170) gives (5.167). The proof of (5.169) is the same on
replacing hg by hp,.
For (5.168) we write
”‘]L(YB ) _VL(Z‘anrl\YanJr]s(D) ”h

n+17

—Vi(Z Y, @
< (¥, ®)llnlle” " Fonet ower

n+1?

=0(G(Zs,,,. ¢) |:|JL(Y3,,+1)|h + Lok ||JL(Y8,,+1)||11F,L[¢]hg,GK]

where we used Lemmas 5.5 and 5.15. By (5.167), and rewriting the second term by moving
the scaling from J to the norm,

1JL(Ys,,, @)e Ve Fona Vo Oy

n+1?

< 0(1)G(Zs,,,. go)[r”*“/2|f<xa,,>|.; + Lo ||J(Xan)||ﬁ,c3xj|

Recall that my = 9 and the scaling dimension d; = (3 — ¢) /4. Equation (5.168) now follows

by multiplying both sides by G '(Zs,, . ¢), and taking the supremum over ¢. a
Lemma 5.25

| e Inceas, < O (5.171)

|Frye™ "l 45 < O(De!M41 (5.172)
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and J, = R: — Fg e~V satisfies on small sets the bounds

_3_
190 lli. G4 a8, < O3
[l s, < O(DFH (5.173)

I
Walg, a5, <O)g+™"

Proof First we prove (5.171). ﬁRn is defined in (4.43) and (4.45), and is supported on small
sets. We estimate its h norm as in the proof of Lemma 5.19

I Fr, (X5, )l < Z|&n,P(X6n)|/ dx || P(P(x),dP(x))lln
P Xon

< cLZ|&n,p(x5n)|g*‘(§/
p )

- __ gfx, dy(elH()
< CL Y N (X517 G (X, e P P00
P

dx (e1* ) +8"lel%, 1.0+ 1)

n

for any y = O(1) > 0. Hence, using Lemma 5.5
| Fr, (Xs,, ®)e "X ||y < || F (X, D) lnlle”" X @,

<CL Y 2%nl|&, p(Xs)18 " Ge(Xs, . @)
P

We thus obtain (remembering that &, p are supported on small sets) on using (5.136) of
Lemma 5.17 for ¢ sufficiently small depending on L, implying g sufficiently small,

1Fr, (Xs,. ®e " Con- Dl 6 a5, <CLET D M pllas, < OMF
P

This proves (5.171). Now we turn to the proof of (5.172). As observed in the proof of
Lemma 5.17, hi” |&, p|as, <n(P)! |15R3|f1*,A,6,, < 0(1)g""/4=". We have from the defini-

tion of F, given in (4.43) | Fg, (X5,)l;. < O(1) X p |y, p(Xs,)[h:", whence
|Fryli, s, < O 16 plas, 2P < O 4
P

which proves (5.172).

To get these bounds for J, = Ri — ﬁR,, e~V we use (5.171) and (5.172) to bound I}Rne";"
part. We can substitute h for h in (5.171) since the h norm is smaller than the h norm. We
bound R,jl by Lemma 5.17. We have also used the trivial bound ljoas, < ||J||ﬁ.63K,A,5n to
obtain the second inequality for J from the first.

Lemma 5.26

I Rt 1 tinear .Gy, a8, < O(L)L™9/2g34=n (5.174)
| Rt tinear lhe, 48,4, < O(H)L™1792gH /40 (5.175)
’ ks n+1
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Remark This is a crucial lemma which also figures as Lemma 5.27 in [13] and its proof is the
same. For the readers benefit we give the details below. The proof is based on the principle
that the contribution to the linearized part of the remainder from large sets is very small.
For small sets the expanding contributions have been subtracted out leading to normalized
polymer activities and this is sufficient to provide a contracting factor.

Proof Let R, 41 linear> given in (4.47) is the sum of two terms which represent contributions
from small/large sets respectively. Let R, jinear.s.s denote the first term:

-V (Z Y,
Rn+1,linear,s.s(zz3,,+|) = Z e L(Zs, 1\ 5;1+I)J,,,L(Y5,,+1) (5176)
X5n+1 :small sets
LiliSLnH:ZanH
where ¥;,,, =L7'X;,,, and J, = R} — FRne“;". By Corollary 5.1 we get

” Rn+1,linear,s.s(zé,,+1 ) ”h.G,(

<omLor ¥ [un (X5,)l5 + ||J<Xa,,>||.;,G3K] (5.177)
Xg, 4 small sets

Lt )?SL,,H :25n+1

Note that Z;,_, fixes Zs, by restriction and the sum on the right hand side is the same as the

sum over X,, such that L’l}_((;L” = Zs,. We multiply both sides by A(Z;,_,). On the right

hand side we have A(Z;,,,) = A(Z;,) = A()_(HL”) < O(1)A(X;,) by (2.10). We fix a unit

block A, 1 and sum over Zs, ., D A, 1. This fixes by restriction to the over Zs, D A, on

the right hand side. The argument on p. 790 of [6] controls the constrained sum on X, such

that L~'X 5 =25, O A, by L3 times the sum over X5, D A,. Taking then the supremum

over the fixed unit block gives

—(7—¢)/2 73
”Rn+l,linear,s.s“h,GK.A,B,lH =< 0(1)L (-e)f L [|J11|ﬁ_A,5n + ”Jn”flﬁcydqﬁsn]

< O(1)L™U=9)/2g3/4=n (5.178)

where for the second inequality we used Lemma 5.25.
The second term in (4.47) for R, 11 1inear Which gets contributions only from large sets is

—Vi(Z Y, h —1
Ryptinearts (Zs, )= »_ e PO\ RE (171X ) (5.179)
X‘Sn+l :large sets
L—1xL

3 =Z
Snt1 8

n+1
where we have used J, = R? since the relevant part F r, 1s supported on small sets. We first
bound in the h norm and observe that because of the rescaling involved and Lemma 5.17

IR (L™ X5, )lle < 1 REX5) 156, Ge (Xs,,,) < 0120123416 (2

n+1 n+l)

so that on using Lemma 5.5 for eV

1Ry tiinear s (Zs, ) lng, < O 3~ 2ol

X‘sn+l
L=1XE =z
Snt1 41

:large sets
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We estimate the A norm as before except that for large sets we use from (2.11).
A(L’IX(SLM) < ch"‘A_p(X(;nH) for any positive integer p with ¢, = O(1). Choose
p = 2. Therefore

| Rt tinear, 5. I, Gy, 4.8, < O(1)L™'g>*" (5.180)

Adding the contributions (5.176) and (5.180) we get (5.174). Equation (5.175) can be proved
in the same way. For the small set contribution we use the kernel bounds in Corollary 5.1 and
Lemma 5.25. For the large set contribution we first use the rescaling involved to shift on the

N

right hand side the h, norm to the h, norm followed by the kernel bound in Lemma 5.17. [

Proof of Theorem 5.1 From (4.41), R, is the sum of R,y main, Rn+t1 linear> Rnt1.3 and
Ryi14. Ryt1main satisfies the bound given in Lemma 5.21. For L large and ¢ small de-
pending on L implying g sufficiently small C;g%* < L=1/2g34" with n = 1/64. Similarly
Crg37 3% < L~12g"/4=1 for § = . Therefore ||| Ryt 1.mainllng1 < L™/2g"/47. Similarly
from Lemmas 5.22 and 5.23 we get [|Ryi1,jllnr1 < L7284, for j = 3,4. Adding
these bounds to that provided for R, main by Lemma 5.26 we have that the sum satis-
fies the bound (5.11) for L sufficiently large. The bounds (5.9), (5.10) and (5.12) have been
proved in Lemmas 5.17 and 5.18. ]

6 Existence of the Global Renormalization Group Trajectory and the Stable Manifold

This section is devoted to the proof of existence of the stable manifold starting from the
unit lattice. Namely, there exists an initial critical mass p which is a Lipshitz continuous
function of the coupling constant gy such that RG trajectory is bounded uniformly on all
scales. The proof is complicated because of the presence of lattice artifacts which become
inocuous if we advance sufficiently on the RG trajectory. We therefore prove the result by
a combination of three theorems, namely Theorems 6.1, 6.2, and 6.3. We first iterate the
RG map a finite number n of times and then restart the trajectory. Theorem 6.1 says that
there exists a critical mass such that the RG trajectory is uniformly bounded at all scales
n > ng > 0. Theorem 6.2 says that if ng is sufficiently large then the critical mass p,, at
this scale is a Lipshitz continuous function continuous function of the contracting variables.
The stable (critical) manifold at scale n(, appropriately interpreted for a sequence of non-
autonomous maps, is constructed. Finally Theorem 6.3 says that there exists an initial critical
mass o which is a C! function of gy such that after n( applications of the RG map we arrive
at the critical mass u,,, of Theorem 6.2. Combining Theorem 6.2 with Theorem 6.3 proves
the existence of the stable manifold starting from the unit lattice. One consequence is that
the coupling constant g, is bounded away from O uniformly in 7.

6.1 The flow

Define g, = g, — g with g defined by (5.2) and W,, = w,, — w,.. Here w, is the function on
U, =0(8,Z)* defined in Lemma 5.9. According to Lemma 5.9, w,, — 0 geometrically fast in
W forall I > 0.

We will use as coordinates of the RG trajectory

Un=(gns/lru R,, V~Vn) (61)

The RG map
Upt1 = fn-H(Un) (62)

can be written in components (see (4.39), (4.42), (4.16) and Lemma 5.9)
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Bt = fr1,g () = 28 + 5, (un) (6.3)
Hst = Fust @) = Ly + 5, (0) (6.4)
Ryt1 = fur1.R(Up) =: Upt1(Un) (6.5)
Wit = furtw(Un) = (Va1 = Veu) + Wi L (6.6)
with initial wy = 0 and Ry = 0. This implies that Wy = —w, and our initial condition is
vo = (o, Ko, 0, Wo) (6.7)

a(e), &, p, are defined by
a(e)=2—L° =1—-0(ogL)e
for ¢ sufficiently small depending on L, and

En(Un) = —L¥ a8y — L (ay — acx) (@ +8)° + &4 (un) (6.8)
Pn(Un) = —=L¥ by (8 4 80)* + pu(Un) (6.9)

Let E, be the Banach space consisting of elements v, with the norm
valls = max((v)™"1&al, & lial, &4 PR, € I1Wal) (6.10)
where the norm || R|[|s, of R, is as defined in (5.6). v is the O (1) constant which figures in
the specification of the domain D,, (5.4). We have 0 < v < 1. We will take v > 0 sufficiently

small depending on L and this will be specified in the proofs of Lemmas 6.2 and 6.3 below.
The norm ||W,||5, and the constant ¢,, are as specified in Lemma 5.9.

6.2 Domains and Bounds

Let E,(r) C E, be the open ball of radius r, centered at the origin:
E,(r)={v, € E,:|uplln <1} 6.11)
Let D, be the domain of (g,, u,, R,) defined in (5.4) and (5.5).
v € E,(1) = (8, Un, Ry) €D,y (6.12)
and then Theorem 5.1 holds.

Let v, € E,(1). Let ¢ > 0 be sufficiently small (depending on L). Then from Theo-
rem 5.1, Lemma 5.12, (6.8) and (6.9) we get the bounds

&, (u)| < Cp, ((u2 +L7")g + gll/H)
16n (V)] < C13° (6.13)
NUp+1 ) g1 < L*1/4g11/47r7

We have the following Lipshitz bounds:
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Lemma 6.1 Let v,, v, € E,(1/4). Then we have:

) 16 (o) = &) = Co (02 + L7F 43w, — v,

(i) 16n(Un) = AU < CLg* vy — VL lln
(i) MUns1 (W) = Unt W) st < OL™AV 4wy, — vy |1,

(6.14)

. ~—1 —1/5
(iv) Ccr ”fn+l,w(Un) - fn+l,w(Uy,,)||n+1 <L / v, — U};”Vl

Proof §,,, Pns Uys1 are (norm) analytic functions in D, and thus in E,(1). The analyticity
follows from the algebraic operations in Sect. 4, the norm analyticity of the reblocking map
together with the norm analyticity of the extraction map (Theorem 5 [6]). Therefore we can
use Cauchy estimates exactly as in the proof of Lemma 6.1 of [13] together with the bounds
(6.13) to get (i), (ii) and (iii). To get (iv) note that from (6.6) and the definition of the norms
in (5.61) we have

||fn+1,w(vn) - fn+1,w(v,,1) ||n+l

6p+l N
<L max sup ((le +8,41) g | (Lx) — w;(”)(Lx)I)
1=P=3 (501123

6p+1
=
<L’ max sup (M + 5n+1> 1B (y) = WP ()]
1=p=3 5,28 \\ L
6p+1
<1274 max  sup <(|y| +8,)75 [P (y) — ~ﬁ,(”)(y)|>
1<p=<3 ye@Z)3

—1/5\1~ ~
SL / ”Wn _W;,Hn

where we have used d; = % and then L large and ¢ sufficiently small. Now dividing both
sides by ¢, we get (iv). O

6.3 Existence of the Global RG Trajectory
Let D, be the domain specified by (5.4), (5.5), and (5.6). Let (go, 1o, 0) belong to Dy C Dy

where D is specified by

~ _ - _ _3te, _o_
ol <27 g, || <2700 Lm0 g2

Let ny be a positive integer. By iterating the RG map n, times using Theorem 5.1 and the
flow equation (4.39) recursively we obtain for ¢ sufficiently small depending on L and ny,
(8no> Mngs Ruy) € Dpy(1/32) where D, (1/32) is specified by

Bl < —v3 g < =32
n < —V , n < —
nol =358 Pl =358
1 =11/4—
l1Rng g < 358 /4

We will now prove the existence of a global solution to the discrete flow map (6.2):

Un+1 =fVl+1(UVl)7 VnZno

@ Springer



The Global Renormalization Group Trajectory 1003

with initial condition

Upy = (gn(p Mngs Wnov Rno)

in a bounded domain. We will say that {v, : v,+1 = fu+1(v,), 7 > ne} is the RG trajectory
restarted at scale ng. To this end we consider the Banach space E,, of sequences s,, =
{Un}nzn,» €ach v, € E,, with the norm

no

lI1Sno Il = sup [|vp|ln (6.15)

n=ngpy

and the open ball E,,,(r) CE
Eo (r) = {8y : lIsnell <7} (6.16)

We will derive on the space of sequences E,; an equation that a global RG trajectory must
solve and then prove for v,, € E,,(1/32) the existence of a unique solution in the ball
E,,(1/4), for a suitable choice of r, by the contraction mapping principle. This adapts a
standard method from the theory of hyperbolic dynamical systems in Banach spaces due
to Irwin in [23]. Irwin’s analysis is explained by Shub in Appendix 2, Chap. 5 of [27]. For
earlier applications see Sect. 5 of [7] and Sect. 6 of [13].

Theorem 6.1 Let L be large, v be sufficiently small depending on L, then ¢ sufficiently
small depending on L. Let vy, € E,(1/32) for any integer ny > 0. Let (8,,, Rn,, Wn,) be
held fixed. Then there is a [, such that there exists a sequence $,, = {Up}pzn, in Ep,(1/4)
satisfying v, 11 = fur1(v,) forall n > ny.

Remark The pi,, of the theorem is called a critical mass. We Write i, = Ly, c-

Proof Our initial data will be at scale ng. Let ng <n < N — 1. We iterate the map (6.3)
forwards N times. We iterate the map (6.4) backwards N — n times starting from a given
wy. We then easily derive

n
Bupr = ()T T8 + Y (@) V(). mo<n<N-1
Jj=no
N-1
P = L™ F N0 SN LU ), mg—1<n<N -2
Jj=n+1
Let us fix uy = py and take N — oo. In other words we assume the (1, flow is bounded
and then must show that such a flow exists. We have

n

Bupr = ()" TG + Y (@) IEj(v), n=ng (6.17)

j=no

nd 3

+e -

== Y LT (), nzng—1 (6.18)
Jj=n+1
together with

Ruyp1 =Upyi(v,), n=ng (6.19)
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Wn+l = (VIH»I - Vc*) + vMVn,L (620)

The flow W, is independent of that of g,,, i,,, Ry, is solved by (5.60) and satisfies the bounds
of Lemma 5.9. This solution can be incorporated in the v, and w,, is then no longer a flow
variable.

For ¢ sufficiently small (depending on L)

0O<a(e) <1 (6.21)

Note that s,,, € E,,(1/4) implies v; € E;(1/4) for all j > n¢. Then the infinite sum of (6.18)
converges by (6.21) and (6.13). So (,,, has now been determined provided (6.17)—(6.19) has
a solution in the afore mentioned ball. It is easy to verify that any solution of (6.17)—(6.18),
together with the w flow, is a solution of the RG flow v, 1 = f,4+1(v,) for n > ny.

We write (6.17)—(6.19) in the form

Uny1 = Fn+l (Sno)v n=ng (622)

where s, = (Uny, Ung+1, Ung42, - - -) and F, | has components (Fn(i)l, Frfﬂi)l, Fn(?l) given by
the r.h.s. of (6.17), (6.18), (6.19) respectively.
If we write

F(Sno) = (Fn() (Sn())v Fn[)+l(sn())s .. )

then (6.22) can be written as a fixed point equation
Spy = F(Sno) (623)

We seek a solution of (6.23) in the open ball E, (1/4) with initial data v,, = (£y, n,>
Ry, Wyy) in E, (1/32) with (g,,, R,,, Wy,) held fixed. The existence of a unique solution
follows by the standard contraction mapping principle and the next lemma. ]
Lemma 6.2

Sip €E,(1/32) = F(s,,) €K, (1/16) (6.24)

MOIeOVEI,fOI SV!()! S;l (S En()(1/4)
”I (sn ) I (S/ )” _< ”S S/ ” (6 25)
0 noy 2 no no °

Proof First we prove (6.24), and thus take s,,, € E,;(1/32). Then v, € E,(1/32) for every
n > ngy and we can use the estimates (6.13). From (6.17) and the estimates in (6.13) we have

n

1 ; ,
@) ES i) < al)55 + 07 Y ate) ™ Cu (02 + LTI + )

32 :
Jj=no
1 g gv g
—+C—S Y4 cC C
T Bha —a(e))+ T=ae + Ly —a(e)-1L-)
1 1
< —+L83/4_” C v+ Ci &< —
32  wvlogL logL v(l —L9) 16
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for L sufficiently large, v sufficiently small depending on L so that %” < 1/96 and then

¢ sufficiently small depending on L so that g < C| ¢ is sufficiently small, £ <1/96

and Vf)Lle/“_" <1/96.

Similarly from (6.18) and (6.13) we have

Cr
v(I—L—7)

oo
—2-8)| ) . SMEGny _ -3 TN
& IR ()l < e’ _Z LT3 L7 A= L) < o
j=n+1
since 6 = 1/64, L sufficiently large, and ¢ sufficiently small depending on L.
Finally from (6.19) and (6.13)

e _ 1
N A T
for L sufficiently large. This proves (6.24).
To prove (6.25), take s, s,’m € E, (1/4). This implies that v,, v, € E,(1/4) for every
n > no and we can use the Lipshitz estimates of Lemma 6.1. Note that the initial coupling
8&no 1s held fixed. Then we have

(vg)—l |F(g)

@) (o
n+l (s’lo) - Fn+l (Sn0)|

n

<Y a@" )W) — &)l

Jj=no
<(g)! Za(e)n—ch((vz + L74)g? +§11/47,,)”sn0 —520 I

Jj=no
Cr i gv g 1

< T4+ C C ) s <l —§

(vlogL"2 +Cp —a() + L0 —ae) 1L lISng — Sy, Il < 2||s |

by estimating as above in the bound for Fn(i)l (Sn,) with L sufficiently large, v sufficiently
small depending on L and ¢ sufficiently small depending on L. Similarly,

n

g OVIEY (540) — ()0
nd 3
3t (i) =—(2=8) ~ ~
< D LTEUTE 5 w) — 5w
Jj=n+1

_34e _34e = / 1 /
LA =L CLE sy = Sl = Slisn =,
for L sufficiently large and ¢ sufficiently small depending on L. Finally

gV E (sng) — Foiy (s ) Ml

=g AN Uit (U) = Ut WD s
B 1
< 0(1)L 1/4||Sn() - S;OH =< EHSH() -5

!
Wl

for L sufficiently large. Thus (6.25) has been proved. This completes the proof of Theo-
rem 6.1. 0
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6.4 Stable manifold

Theorem 6.1 says that if v,; = (8ny, Ung> Rng> Wny) € En,(1/32) for any ng > 0 then there
is a critical mass (,, = [y, such that a uniformly bounded RG trajectory exists. The The-
orem 6.2 below proves the uniqueness of w,, . for ng sufficiently large: w,, . is a Lipshitz
continuous function of (g, Ry, Ws,). In Theorem 6.3 below we prove that given u,, as
above there is a 1y given by a C! function of g, such that after n, applications of the RG
map we arrive at (L.

To this end we represent the Banach space E, as a product of two Banach spaces E, =
En,l X EiL,Z- We write v, € E, as v, = (Un.lv Un,Z) where Un,1 = (gns Ry, Wn) and Un2 = Mn-
U2 18 the expanding (relevant) variable. Let p;, i =1, 2, denote the projector onto E, ; and
fui=pio fu. Thenorm || - ||, on E, being a box norm we have

”Un ”n = maX(”Un,l ”m ||Un,2||n)

o e (L4 e~
where (U, 2[l, = &%V wal and U, 11, = max((v@) & l, 4PN R, s, € 11Walls,)-

In the following we continue to assume that L is sufficiently large, followed by v suffi-
ciently small depending on L, then ¢ sufficiently small depending on L. The last condition
also implies that g < C¢.

Theorem 6.2 Let s, = {v, : Upy1 = fusr1(Un)buzn, € E(1/4) be the global RG trajectory
of Theorem 6.1. Then for nq sufficiently large there exists a Lipshitz continuous function
h : E,,1 — R with Lipshitz constant 1 such that the stable manifold of the sequence of
maps { fuYnzng+15 W, = {un, € Ey(1/32) 1 s,y € E(1/4)} is the graph

er(] = {Uno,l s h(vno,l}

We will prove the theorem following the analysis of Shub in [27, Sect. 5]. The Schub
analysis has been employed earlier in the context of continuum models (see [7, Sect. 5.3]
and [13, Sect. 6]). Here we have to take account of additional features stemming from the
lattice which results in ny having to be taken sufficiently large (sufficiently fine lattice) for
the argument to work. This will be clear from the proof of the following lemma from which
Theorem 6.2 follows.

Lemma 6.3 Let v,, v, € E,(1/4). Then for n > ny, ng sufficiently large depending on v
and L

I fur11 ) = furt1 @D a1 < A = &) llvy — vl (6.26)

Lll’ld, if||vn,2 - Uy/,g”n = ”Un,l - U;lyl ||Vl then

”fn+l,2(vn) - fn+l¢2(v,,l)”n+l = (1 + S)HUn - Uy/L”n (627)

Proof First we prove (6.26). f,1,1 has components f,11¢, fut1,z and f41 . From (6.3)
fn+l,g(vn) = a(f)gn + én (Un)
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Since v,, v, € E,(1/4) we can use Lemma 6.1. Therefore for n > ng

(vg)il |fn+1,g(vn) - fn+Lg(U;/1)|
< (v, — Uylln + w8) " 1E, (V) — &, (V)]

1 1
< (1 —elog(L) + cLs(v 4+ —L7M07 —s”“ﬂ)) Uy — UL |l
V v

Let L be large. Let v be sufficiently small and ng sufficiently large so that C; L™"04/2 <y <

C]—L and ¢ sufficiently small so that v > C; 38", Then we have

1 1
1 —elog(L) +¢C;, (v + L7 4 —53/4*”> <1+e(—log(L)+ 1 4+ L79m0/2 4 g3/8)
v v
<l+e(—log(L)+3)<1-—c¢

Therefore

&) far12Wn) = farr W < A = &)llv, — vyl

Since f,+1.r(Vy) = U,41(v,), we have from Lemma 6.1 for L sufficiently large
&M fir R (W) = furr k@D llast < (L= )l|vy = Uyl
as well as
e I s tw @n) = fasrw @D gt < (= &)llun — Uyl

These three inequalities prove (6.26).

Remark ng had to be chosen sufficiently large because the g, flow coefficient a,, see (6.7),
depends on the lattice scale n. a, converges geometrically (Lemma 5.12) to a constant a...
As a result we have to wait sufficiently long before g, becomes irrelevant. A consequence
of this is the presence of the L™7"g? term in the first inequality of Lemma 6.1. It has to be
sufficiently small to ensure the validity of the first of three inequalities above.

Next we turn to (6.27). In this case by assumption [[v, 2 — v, || = [lu,,1 — v, || and
hence, since our norms are box norms, we have

”Un - U,,1||n = ||Un,2 - U,,l,2||n - §7(275)|Mn - M;'
From (6.4)
34 -
fn+1,/4(vn) =L7 pw, + pp(vy)
Then, using Lemma 6.1, we have
—-—(2— ’ 3te ’ —-—(2— ~ ~co
g fuwn) = [ = LT vy — vyl — 820 15(un) — AUy
34e _
> (L 2 = CLga)“Un - U;g “n
>+ ve — v lla

for ¢ sufficiently small depending on L. This proves (6.27). O
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Proof of Theorem 6.2 Given Lemma 6.3, the proof follows the Schub argument as in [13].
Namely, to prove that W, is given by a graph of a function vy, = h(yn,1) it is enough to

prove that if in W,fo we take two points v, = (Up,,1, Ung,2) and U,’l0 = (U,/,Olyl, U;O,z) then

’ /
||Un0,2 - Unoqznno = ”Uno,l Ut ”no (6.28)
because then for a given v,,,; we would have at most one v, >, and by Theorem 6.1 there

exists such a vy, . This means that W}j'o is the graph of a function &, v, 2 = h(Uy,,1), and
moreover

”h(vn().l) - h(v;{lO,])HH() =< ||Un(),l - U;’Ovl ”ﬂ()

Suppose (6.28) is not true. Then
vn.2 = Upy allng > Hvngt = U1 llng (6.29)
Equation (6.29) implies that (6.27) holds. The latter followed by (6.26) gives

1 s12Wn0) = Fros1 20 lng1 = (L4 &) 10y = Vg llng > (1 = ) vy = Vg g

2 Il fug+11 Wng) = fug1,1 (W) lng+1 (6.30)

and hence

||fn0+1 (Un()) - fn0+l (U’;O) ||n0+l

= [l fag+1,2Wag) = Frg1,2Wp ) lng1 = (14 &) gy — Uy llng (6.31)

Define the composition of maps
Pr]: = fak 00 fur20 fayi
Now
P2, (Wag) — P2, Wi llng2 = I frgs2 Sings1 Wag)) = Frngs2 g1 (W D lgs2
By (6.30) and the second part of Lemma 6.3 followed by (6.31) we get
P2, (Wag) = P2, Wi lng2 = (L) Fug1 Wng) = Fager1 (U gt = (L0210 — Uy g
Repeating this k times we get for all k > 0
1P, Wng) = P Wi gk = (L &)¥lUng = V) g (6.32)

Now v, U,’,O belong to W,fo and 73,’,‘0 (up,) is a member of the sequence s,,, € E(1/4). There-
fore ||73,’jO (Ung) llng++ < 1/4. Therefore we have from (6.32) the bound % > (1+ es)"llun0 —
U,/lo |, - By making k arbitrarily large we get a contradiction because v, # U,’lo under (6.29).

Hence (6.29) is true and the Theorem 6.2 has been proved. O
The next theorem establishes the uniqueness of the critical mass at the unit lattice scale.
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Theorem 6.3 Let ng and v, be as in Theorem 6.2. Let gy, [to, Ry, Wo belong to Do, defined
in the beginning of Sect. 6.2. with Ry =0, wy = 0. Let U, (1) = {go : 270 (vg)~1|go] < 1.
Let ¢ be sufficiently small depending on L and ngy. Then there exists an open ball Uy C U, (1)
and a C' function hy : Uy — R such that for o = ho(go) the RG map applied n times gives
the effective critical mass Ly,

Remark This is the first time in our estimates that € has been chosen to depend on n. Recall
that in Lemma 6.3 n( was taken to be sufficiently large depending on v and L.

Gre),, ~
7 0 Let E,, 1 <n <ny,

Proof Let v, be asin (6.1). Let r,, =2~"0="+ and A, = L~
be the Banach space consisting of v, with norm

_ 1~ Ca—] ——(2— —_ (1 _ ~ Ty ~
lvalla =max(r, ' 0@) 7' 18al, 7y 2 87 wal, &7 TPNRAL G IWalla)  (6.33)

We have E‘n CE,. En(l) is the open unit ball in En. Note that Eo(l) coincides with Dy as
defined in the beginning of Sect. 6.2, for Ry = 0 and wy = 0, and E,,O (1) = E,,O(%). Then by
Theorem 5.1 and Lemma 5.9 for 1 <n < n( we have each RG map f,, : En(l) — E,,H (D).
Moreover each such map is (norm) analytic. Define the composition of maps

Py = fuo © frg1 00 fi: Eo(1) = E, (1) (6.34)

P," is the composition of a finite number of analytic maps and therefore analytic. We con-
sider the equation v,, = Pgo (vp) in the direction w:

tng = (P") (Vo) (6.35)
with vy = (go, Ko, 0, Wo) with wy = 0 (recall that Wy = wy — w,).
We will solve (6.33) for po for fixed w,, using the (Banach space) implicit function

theorem. Let x = (8o, itn,) and y = po. We have set wyp = Ry = 0. Let V; be the Banach
space of elements x with norm

llx ]l = max(ry ' w@) 3ol 7' 8 |1t D
Let V, be the Banach space of elements y with norm
Iyl =rg 258~ ol
Let V;(r) be the open ball in V; of radius r, centered at the origin. Define
F(x,y) = (Py")u(vo) — in, (6.36)

Solving (6.35) is equivalent to solving F(x, y) =0 for y.

Recall that vy = (g, to, 0, Wo). We have F(0,0) =0 and F(-,-): Vi(1) x V(1) > R
is an analytic map and therefore C2. Taking a y derivative of F(x,y) gives D,F(x,y) =

Dy, (Pg") «(vo). We will prove that the linear map

DyF(0,0): V, - R
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is injective. It is easy to see that

ng—1
n )n (3+é) (3+s)
(Py)u(vo) =L 2" <u0+L YL p,(v»)

j=

(6.37)
pj(vj))=pjo (P({)M(Uo)

0; was defined earlier in (6.9) and is analytic in £;(1). The map p; o (P({ ). 1s analytic since
it is a composition of analytic maps. Let u € Vz(i). Let y be the closed contour y = {u
1 — po = Re'} with R = 1rgrog?>~. We estimate the 1 derivative of 5; o (P({)H(U()) by
using the Cauchy integral formula integrating along the contour y enclosing a pole at
together with the estimate for o;(v;) given in (6.13) which is valid in E;(1). The latter is
guaranteed by our choice of contour. We have

D, pio (P, (v ’ < <
noPj ( o)n( 0) Zo=110=0 R

Using this estimate we get from (6.37)

B+e), _
0 7 8
>L (1 CrLng8 )

Dy, (Pgo)u(v()) _

80=n0o=0

Taking ¢ sufficiently small depending on L and ny makes g sufficiently small so as to ensure

D,, (730 )1 (o) lgo=pup=0 = 2 Therefore the map D, F(0,0) : V, — R is injective. Hence by
the implicit function theorem there exists a ball Uo containing x = 0 with Uo c Vi(1), and
a C! function hg in Uy with hg(x) € Vz(l) such that F(x, ho(x)) = 0. For ¢ sufficiently
small depending on L and ny we have p,, € Uy. This completes the proof of the theorem
because for (i, € UO, UO restricts to the ball Uy, and correspondingly ho restricts to the
desired function h. O

Theorems 6.2 and 6.3 put together completes our construction of the stable manifold
starting from the unit lattice.

Finally we remark that as a consequence of Theorem 6.2 we have v, € E,(1/4), Vn > ny.
This implies that |g,| < ivg, Vn > ny. By construction the same statement is also true for
0 <n <ngy. Whence foralln >0

<l—iv>§<gn<(l+é—ltv)§ (6.38)

We have 0 < v < % Therefore the effective coupling constant generated by the discrete RG
flow is uniformly bounded away from O at all RG scales.
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